Skip to main content

Advertisement

Log in

C-LLC-LL resonant converter with wide-gain-range and low-stress for hold-up operation

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

For applications with hold-up time requirements, the LCLC converter can achieve a wider voltage gain range than the LLC converter without degrading the normal operation efficiency due to its variable-magnetizing-inductor (VML) structure, which is formed by an inductor and an additional capacitor. However, the wide gain range achieved by the VML is at the expense of a high resonant voltage stress of the VML’s capacitor, which affects the converter volume/cost. Hence, to solve the contradiction between wide gain range and low capacitor voltage stress when the VML technique is adopted for hold-up operation, this paper proposes a novel C-LLC-LL converter. Specifically, the VML is arranged into a novel C-dual-LL structure. By relying on the unique output voltages relation between C-dual-LL’s two branches, the reduced voltage stress of the VML’s capacitor and the expanded voltage gain range can be simultaneously realized. To evaluate the feasibility of the proposed solution, a comprehensive analysis is conducted, and experimental results obtained from a 500-W C-LLC-LL prototype are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Zhao, S., Khan, N., Nagarajan, S., Trescases, O.: Lithium-ion-capacitor-based distributed UPS architecture for reactive power mitigation and phase balancing in datacenters. IEEE Trans. Power Electron. 34(8), 7381–7396 (2019)

    Article  Google Scholar 

  2. Wang, P., Chen, Y., Kushima, P., Elasser, Y., Liu, M., et al.: A 99.7% efficient 300 W hard disk drive storage server with multiport ac-coupled differential power processing (MAC-DPP) architecture. Proc. IEEE Energy Convers. Congr. Expo., 5124–5131 (2019)

  3. Kim, D.-K., Moon, S., Yeon, C.-O., Moon, G.-W.: High-efficiency LLC resonant converter with high voltage gain using an auxiliary LC resonant circuit. IEEE Trans. Power Electron. 31(10), 6901–6909 (2016)

    Google Scholar 

  4. Baek, J., Lee, J.-B., Kim, J.-K.: Effective hold-up time extension method using fan control in server power systems. IEEE Trans. Ind. Electron. 67(7), 5820–5824 (2020)

    Article  Google Scholar 

  5. Kathiresan, R., Das, P., Reindl, T., Panda, S.K.: A novel ZVS DC–DC full-bridge converter with hold-up time operation. IEEE Trans. Ind. Electron. 64(6), 4491–4500 (2017)

    Article  Google Scholar 

  6. Wei, Y., Luo, Q., Mantooth, A.: Overview of modulation strategies for LLC resonant converter. IEEE Trans. Power Electron. 35(10), 10423–10443 (2020)

    Article  Google Scholar 

  7. Abdel-Rahim, O., Alamir, N., Orabi, M., Ismeil, M.: Fixed-frequency phase-shift modulated PV-MPPT for LLC resonant converters. J. Power Electron. 20(1), 279–291 (2020)

    Article  Google Scholar 

  8. Fei, C., Gadelrab, R., Li, Q., Lee, F.C.: High-frequency three-phase interleaved LLC resonant converter with GaN devices and integrated planar magnetics. IEEE J. Emerg. Sel. Topics Power Electron. 7(2), 653–663 (2019)

    Article  Google Scholar 

  9. Wen, H., Jiao, D., Lai, J.-S., Strydom, J., Zhang, L.: An accurate voltage gain model considering diode effect for LLC resonant converter in wide gain range applications. Proc. IEEE Energy Convers. Congr. Expo., 5436–5441 (2020)

  10. Pham, V.-L., Duong, V.-T., Choi, W.: High-efficiency active cell-to-cell balancing circuit for Lithium-Ion battery modules using LLC resonant converter. J. Power Electron. 20(4), 1037–1046 (2020)

    Article  Google Scholar 

  11. Jovanović, M.M., Irving, B.T.: On-the-fly topology-morphing control—efficiency optimization method for LLC resonant converters operating in wide input- and/or output-voltage range. IEEE Trans. Power Electron. 31(3), 2596–2608 (2016)

    Article  Google Scholar 

  12. Glitz, E.S., Hsu, J.-D., Ordonez, M.: Power loss estimation in LLC synchronous rectification using rectifier current equations. IEEE Trans. Ind. Electron. 67(5), 3696–3704 (2020)

    Article  Google Scholar 

  13. Lee, I.-O., Moon, G.-W.: The k-Q analysis for an LLC series resonant converter. IEEE Trans. Power Electron. 29(1), 13–16 (2014)

    Article  Google Scholar 

  14. Kim, M.-Y., Kim, B.-C., Park, K.-B., Moon, G.-W.: LLC series resonant converter with auxiliary hold-up time compensation circuit. Proc. 8th International Conf. on Power Electron. ECCE Asia, 628–633 (2011)

  15. Jeong, Y., Lee, M.-S., Park, J.-D., Kim, J.-K., Rorrer, R.A.L.: Hold-up time compensation circuit of half-bridge LLC resonant converter for high light-load efficiency. IEEE Trans. Power Electron. 35(12), 13126–13135 (2020)

    Article  Google Scholar 

  16. Tang, X., Xing, Y., Wu, H., Sun, K., Ma, X.: An improved LLC resonant converter with phase-shift controlled dynamic series-parallel reconfiguration-windings for hold-up applications. Proc. IEEE Appl. Power Electron. Conf. Expo., 791–796 (2019)

  17. Kim, B.-C., Park, K.-B., Choi, S.-W., Moon, G.-W.: LLC series resonant converter with auxiliary circuit for hold-up time. Proc. IEEE Int. Telecommun. Energy Conf., 1–4 (2019)

  18. Tang, X., Wu, H., Zhao, J., Xing, Y.: Family of half-bridge LLC resonant converters with auxiliary switches for hold-up operation. IET Power Electron. 12(6), 1376–1384 (2019)

    Article  Google Scholar 

  19. Yu, Z., Wu, H., Hua, W., Zhu, J., Xing, Y.: A dual-transformer-based LLC resonant converter with phase-shift control for hold-up time compensation application. Proc. IEEE Energy Convers. Congr. Expo., 5961–5966 (2018)

  20. Chen, Y., Wang, H., Hu, Z., Liu, Y.-F., Afsharian, J., et al.: LCLC resonant converter for hold up mode operation. Proc. IEEE Energy Convers. Congr. Expo., 556–562 (2015)

  21. Chen, Y., Wang, H., Liu, Y.-F., Afsharian, J., Yang, Z.: Efficiency-wise optimal design methodology of LCLC converter for wide input voltage range applications. Proc. IEEE Energy Convers. Congr. Expo., 1–8 (2016)

  22. Chen, Y., Wang, H., Hu, Z., Liu, Y.-F., Liu, X., et al.: LCLC converter with optimal capacitor utilization for hold-up mode operation. IEEE Trans. Power Electron. 34(3), 2385–2396 (2019)

    Article  Google Scholar 

  23. Vu, H.-N., Choi, W.: A novel dual full-bridge LLC resonant converter for CC and CV charges of batteries for electric vehicles. IEEE Trans. Ind. Electron. 65(3), 2212–2225 (2018)

    Article  Google Scholar 

  24. Elsayad, N., Moradisizkoohi, H., Mohammed, O.A.: A single-switch transformerless DC–DC converter with universal input voltage for fuel cell vehicles: Analysis and design. IEEE Trans. Veh. Technol. 68(5), 4537–4549 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Wang, P., Wang, Z. et al. C-LLC-LL resonant converter with wide-gain-range and low-stress for hold-up operation. J. Power Electron. 21, 1283–1295 (2021). https://doi.org/10.1007/s43236-021-00280-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-021-00280-2

Keywords

Navigation