Skip to main content
Log in

Three-phase three-level four-leg NPC converters with advanced model predictive control

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

This paper presents a computational reduction algorithm for applying model predictive control to a three-level four-leg converter. An optimal switching state is selected by only considering 7 voltage vectors located near the reference voltage vector, rather than using 81 voltage vectors in every sampling period, as in the conventional method. The sector, prism, and tetrahedron are sequentially selected using the position of the reference voltage vector. In addition, the seven voltage vectors selected in advance are the vectors constituting the selected tetrahedron. Thus, the proposed method reduces the computational cost and provides an improved model predictive control that does not affect the performance. The proposed method comprises an experimental setup of the proposed three-level four-leg converter to compare its performance with that of the conventional method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Rodriguez, J., Lai, J.-S., Peng, F.Z.: Multilevel inverters: A survey of topologies, controls, and applications. IEEE Trans. Ind. Electron. 49(4), 724–738 (2002)

    Article  Google Scholar 

  2. Dai, N.-Y., Wong, M.-C., Han, Y.-D.: Application of a three-level NPC inverter as a three-phase four-wire power quality compensator by generalized 3DSVM. IEEE Trans. Power Electron. 21(2), 440–449 (2006)

    Article  Google Scholar 

  3. Méllo, J.P.R.A., Jacobina, C.B., de Rossiter Corrêa, M.B.: Three-phase four-wire inverters based on cascaded three-phase converters with four and three legs. IEEE Trans. Ind. Appl. 53(6), 5539–5552 (2017)

    Article  Google Scholar 

  4. Kouro, S., Perez, M.A., Rodriguez, J., Llor, A.M., Young, H.A.: Model predictive control: MPC’s role in the evolution of power electronics. IEEE Ind. Electron. Mag. 9(4), 8–21 (2015)

    Article  Google Scholar 

  5. Zhang, Y., Yang, H., Xia, B.: Model-predictive control of induction motor drives: Torque control versus flux control. IEEE Trans. Ind. Appl. 52(5), 4050–4060 (2016)

    Article  Google Scholar 

  6. Vazquez, S., Rodriguez, J., Rivera, M., Franquelo, L.G., Norambuena, M.: Model predictive control for power converters and drives: Advances and trends. IEEE Trans. Ind. Electron. 64(2), 935–947 (2017)

    Article  Google Scholar 

  7. Cortes, P., Wilson, A., Kouro, S., Rodriguez, J., Abu-Rub, H.: Model predictive control of multilevel cascaded H-bridge inverters. IEEE Trans. Ind. Electron. 57(8), 2691–2699 (2010)

    Article  Google Scholar 

  8. Vatani, M., Bahrani, B., Saeedifard, M., Hovd, M.: Indirect finite control set model predictive control of modular multilevel converters. IEEE Trans. Smart Grid 6(3), 1520–1529 (2015)

    Article  Google Scholar 

  9. Barros, J.D., Silva, J.F.A., Jesus, É.G.A.: Fast-predictive optimal control of NPC multilevel converters. IEEE Trans. Ind. Electron. 60(2), 619–627 (2013)

    Article  Google Scholar 

  10. Kim, I., Roh, C.R., Kwak, S.: Model predictive control method for CHB multi-level inverter with reduced calculation complexity and fast dynamics. IET Elect. Power Appl. 11(5), 784–792 (2017)

    Article  Google Scholar 

  11. Mohapatra, S.R., Agarwal, V.: Model predictive controller with reduced complexity for grid tied multilevel inverters. IEEE Trans. Ind. Electron. 66(11), 8851–8855 (2019)

    Article  Google Scholar 

  12. Yaramasu, V., Rivera, M., Wu, B., Rodriguez, J.: Model predictive current control of two-level four-leg inverters—part I: Concept, algorithm, and simulation analysis. IEEE Trans. Power Electron. 28(7), 3459–3468 (2013)

    Article  Google Scholar 

  13. Kim, S.E., Park, S.Y., Kwak, S.S.: Simplified model predictive control method for three-phase four-leg voltage source inverters. J. Power Electron. 16(6), 2231–2242 (2016)

    Article  Google Scholar 

  14. Roh, C., Kim, K. H., Park, J. Y., Kwak, S. S.: Simplified model predictive control with preselection technique for reduction of calculation burden in 3-level 4-leg NPC inverter. In: Proceedings of IEEE Applied Power Electronics Conference, pp. 2291–2296 (2020)

  15. Soumya, R.M., Vivek, A.: An improved reduced complexity model predictive current controller for grid-connected four-leg multilevel inverter. IEEE Trans. Ind. Appl. 56(1), 498–506 (2020)

    Article  Google Scholar 

  16. Yaramasu, V., Rivera, M., Wu, B., Rodriguez, J.: Model predictive current control of two-level four-leg inverters—Part I: Concept, algorithm and simulation analysis. IEEE Trans. Power Electron. 28(7), 3459–3468 (2013)

    Article  Google Scholar 

  17. Cortes, P., Rodriguez, J., Silva, C., Flores, A.: Delay compensation in model predictive current control of a three-phase inverter. IEEE Trans. Ind. Electron. 59(2), 1323–1325 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C1013413) and the Korea Electric Power Corporation (Grant number: R21XA01-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangshin Kwak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roh, C., Kwak, S. & Choi, S. Three-phase three-level four-leg NPC converters with advanced model predictive control. J. Power Electron. 21, 1574–1584 (2021). https://doi.org/10.1007/s43236-021-00283-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-021-00283-z

Keywords

Navigation