Skip to main content
Log in

Model-free feature screening via distance correlation for ultrahigh dimensional survival data

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

With the explosion of ultrahigh dimensional data in various fields, many sure independent screening methods have been proposed to reduce the dimensionality of data from a large scale to a relatively moderate scale. For censored survival data, the existing screening methods mainly adopt the Kaplan–Meier estimator to handle censoring, which may not perform well for heavy censoring cases. In this article, we propose a novel sure independent screening procedure based on distance correlation after standardizing marginal variables for ultrahigh dimensional survival data. It is a model-free approach and does not involve the Kaplan–Meier estimator, thus its performance is much more robust than the existing methods. Furthermore, our proposed method enjoys other advantages: it avoids the complication to specify an actual model from large number of covariates; it enjoys the sure screening property and the ranking consistency under some mild regularity conditions; it does not require any complicated numerical optimization, so the corresponding calculation is very simple and fast. Extensive numerical studies demonstrate that the proposed method has favorable exhibition over the existing methods. As an illustration, we apply the proposed method to a gene expression data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Candes E, Tao T (2007) The Dantzig selector: statistical estimation when \(p\) is much larger than \(n\). Ann Stat 35:2313–2351

    MathSciNet  MATH  Google Scholar 

  • Chang J, Tang CY, Wu Y (2013) Marginal empirical likelihood and sure independence feature screening. Ann Stat 41:2123–2148

    Article  MathSciNet  Google Scholar 

  • Chen XL, Chen XJ, Liu Y (2019) A note on quantile feature screening via distance correlation. Stat Pap 60:1741–1762

    Article  MathSciNet  Google Scholar 

  • Chu Y, Lin L (2018) Conditional SIRS for nonparametric and semiparametric models by marginal empirical likelihood. Stat Pap. https://doi.org/10.1007/s00362-018-0993-1

  • Cui H, Li R, Zhong W (2015) Model-free feature screening for ultrahigh dimensional discriminant analysis. J Am Stat Assoc 110:630–641

    Article  MathSciNet  Google Scholar 

  • Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96:1348–1360

    Article  MathSciNet  Google Scholar 

  • Fan J, Lv J (2008) Sure independence screening for ultrahigh dimensional feature space. J R Stat Soc B 70:849–911

    Article  MathSciNet  Google Scholar 

  • Fan J, Song R (2010) Sure independence screening in generalized linear models with NP-dimensionality. Ann Stat 38:3567–3604

    MathSciNet  MATH  Google Scholar 

  • Fan J, Samworth R, Wu Y (2009) Ultrahigh dimensional feature selection: beyond the linear model. J Mach Learn Res 10:2013–2038

    MathSciNet  MATH  Google Scholar 

  • Fan J, Feng Y, Wu Y (2010) High-dimensional variable selection for Cox’s proportional hazards model. Borrowing strength: theory powering applications: a Festschrift for Lawrence D. Brown. Institute of Mathematical Statistics, Beachwood

    Google Scholar 

  • Fan J, Feng Y, Song R (2011) Nonparametric independence screening in sparse ultra-high-dimensional additive models. J Am Stat Assoc 106:544–557

    Article  MathSciNet  Google Scholar 

  • Fan J, Ma Y, Dai W (2014) Nonparametric independence screening in sparse ultra-high-dimensional varying coefficient models. J Am Stat Assoc 109:1270–1284

    Article  MathSciNet  Google Scholar 

  • Gorst-Rasmussen A, Scheike T (2013) Independent screening for single-index hazard rate models with ultrahigh dimensional features. J R Stat Soc B 75:217–245

    Article  MathSciNet  Google Scholar 

  • He X, Wang L, Hong HG (2013) Quantile-adaptive model-free variable screening for high-dimensional heterogeneous data. Ann Stat 41:342–369

    MathSciNet  MATH  Google Scholar 

  • Hu Q, Lin L (2017) Conditional sure independence screening by conditional marginal empirical likelihood. Ann Inst Stat Math 69:63–96

    Article  MathSciNet  Google Scholar 

  • Li H, Luan Y (2005) Boosting proportional hazards models using smoothing splines, with applications to high-dimensional microarray data. Bioinformatics 21:2403–2409

    Article  Google Scholar 

  • Li G, Peng H, Zhang J, Zhu L (2012a) Robust rank correlation based screening. Ann Stat 40:1846–1877

    MathSciNet  MATH  Google Scholar 

  • Li R, Zhong W, Zhu L (2012b) Feature screening via distance correlation learning. J Am Stat Assoc 107:1129–1139

    Article  MathSciNet  Google Scholar 

  • Li J, Zheng Q, Peng L, Huang Z (2016) Survival impact index and ultrahigh-dimensional model-free screening with survival outcomes. Biometrics 72:1145–1154

    Article  MathSciNet  Google Scholar 

  • Lin Y, Liu X, Hao M (2018) Model-free feature screening for high-dimensional survival data. Sci China Math 61:1617–1636

    Article  MathSciNet  Google Scholar 

  • Liu Y, Wang Q (2018) Model-free feature screening for ultrahigh-dimensional data conditional on some variables. Ann Inst Stat Math 70:283–301

    Article  MathSciNet  Google Scholar 

  • Liu J, Li R, Wu R (2014) Feature selection for varying coefficient models with ultrahigh-dimensional covariates. J Am Stat Assoc 109:266–274

    Article  MathSciNet  Google Scholar 

  • Lu J, Lin L (2020) Model-free conditional screening via conditional distance correlation. Stat Pap 61:225–244

    Article  MathSciNet  Google Scholar 

  • Mai Q, Zou H (2015) The fused Kolmogorov filter: a nonparametric model-free screening method. Ann Stat 43:1471–1497

    Article  MathSciNet  Google Scholar 

  • Pan W, Wang X, Xiao W, Zhu H (2019) A generic sure independence screening procedure. J Am Stat Assoc 114:928–937

    Article  MathSciNet  Google Scholar 

  • Rosenwald A, Wright G, Chan WC, Connors JM, Hermelink HK, Smeland EB, Staudt LM (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346:1937–1947

    Article  Google Scholar 

  • Song R, Lu W, Ma S, Jeng XJ (2014) Censored rank independence screening for high-dimensional survival data. Biometrika 101:799–814

    Article  MathSciNet  Google Scholar 

  • Székely GJ, Rizzo ML, Bakirov NK (2007) Measuring and testing dependence by correlation of distances. Ann Stat 35:2769–2794

    Article  MathSciNet  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc B 58:267–288

    MathSciNet  MATH  Google Scholar 

  • Tibshirani R (2009) Univariate shrinkage in the Cox model for high dimensional data. Stat Appl Genet Mol 8:1–18

    Article  MathSciNet  Google Scholar 

  • Wu Y, Yin G (2015) Conditional quantile screening in ultrahigh-dimensional heterogeneous data. Biometrika 102:65–76

    Article  MathSciNet  Google Scholar 

  • Xia X, Li J (2019) Copula-based partial correlation screening: a joint and robust approach. Stat Sin. https://doi.org/10.5705/ss.202018.0219

    Article  MATH  Google Scholar 

  • Xia X, Yang H, Li J (2016) Feature screening for generalized varying coefficient models with application to dichotomous responses. Comput Stat Data Anal 102:85–97

    Article  MathSciNet  Google Scholar 

  • Xia X, Li J, Fu B (2019) Conditional quantile correlation learning for ultrahigh dimensional varying coefficient models and its application in survival analysis. Stat Sin 29:645–669

    MathSciNet  MATH  Google Scholar 

  • Yue M, Li J (2017) Improvement screening for ultra-high dimensional data with censored survival outcomes and varying coefficients. Int J Biostat 13:1–16

    Article  MathSciNet  Google Scholar 

  • Zhang CH (2010) Nearly unbiased variable selection under minimax concave penalty. Ann Stat 38:894–942

    Article  MathSciNet  Google Scholar 

  • Zhang J, Yin G, Liu Y, Wu Y (2018) Censored cumulative residual independent screening for ultrahigh-dimensional survival data. Lifetime Data Anal 24:273–292

    Article  MathSciNet  Google Scholar 

  • Zhao SD, Li Y (2012) Principled sure independence screening for Cox models with ultra-high-dimensional covariates. J Mult Anal 105:397–411

    Article  MathSciNet  Google Scholar 

  • Zhou T, Zhu L (2017) Model-free feature screening for ultrahigh dimensional censored regression. Stat Comput 27:947–961

    Article  MathSciNet  Google Scholar 

  • Zhu LP, Li L, Li R, Zhu LX (2011) Model-free feature screening for ultrahigh-dimensional data. J Am Stat Assoc 106:1464–1475

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the National Natural Science Foundation of China (Grants No. 12031016, 11971324, 11971362, 11771366, 11901581), Foundation of Science and Technology Innovation Service Capacity Building, Interdisciplinary Construction of Bioinformatics and Statistics, and Academy for Multidisciplinary Studies, Capital Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengjian Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Theoretical proofs

Appendix: Theoretical proofs

Proof of Theorem 1

To prove Theorem 1, we need to prove the uniform consistency of the denominator and the numerator of \(\widehat{\omega }_k\) respectively. Because the denominator of \(\widehat{\omega }_k\) has a similar form as the numerator, we only deal with its numerator \(\widehat{\mathrm{dcov}}^2(Z_k,Y)\) below.

It follows from the definitions of distance covariance and sample distance covariance that

$$\begin{aligned} {\mathrm{dcov}}^2(Z_k,Y) = {S}_{k1}+{S}_{k2}-2{S}_{k3},\quad \widehat{\mathrm{dcov}}^2(Z_k,Y) = \widehat{S}_{k1}+\widehat{S}_{k2}-2\widehat{S}_{k3}, \end{aligned}$$

where \(S_{k1} =\mathrm{E}(\Vert Z_k-\widetilde{Z}_k\Vert _1\Vert Y-\widetilde{Y}\Vert _2)\), \(S_{k2} =\mathrm{E}(\Vert Z_k-\widetilde{Z}_k\Vert _1)\mathrm{E}(\Vert Y-\widetilde{Y}\Vert _2)\), \(S_{k3}=\mathrm{E}\{ \mathrm{E}(\Vert Z_k-\widetilde{Z}_k\Vert _1|Z_k)\mathrm{E}(\Vert Y-\widetilde{Y}\Vert _2|Y)\}\), \(\widehat{S}_{k1}=\frac{1}{n^2}\sum \nolimits _{i=1}^n\sum \nolimits _{j=1}^n|Z_{ki}-Z_{kj}|\Vert \widehat{Y}_i-\widehat{Y}_j\Vert _2\), \(\widehat{S}_{k2}=\frac{1}{n^2}\sum \nolimits _{i=1}^n\sum \nolimits _{j=1}^n|Z_{ki}-Z_{kj}| \cdot \frac{1}{n^2}\sum \nolimits _{i=1}^n\sum \nolimits _{j=1}^n\Vert \widehat{Y}_i-\widehat{Y}_j\Vert _2\), \(\widehat{S}_{k3} =\frac{1}{n^3}\sum \nolimits _{i=1}^n\sum \nolimits _{j=1}^n\sum \nolimits _{l=1}^n|Z_{ki}-Z_{kl}|\Vert \widehat{Y}_j-\widehat{Y}_l\Vert _2\), \((\widetilde{Z}_k,\widetilde{Y})\) is an independent copy of \(({Z_k},{Y})\). Similarly, we define

$$\begin{aligned} \widetilde{\mathrm{dcov}}^2(Z_k,Y) = \widetilde{S}_{k1}+\widetilde{S}_{k2}-2\widetilde{S}_{k3}, \end{aligned}$$

where \(\widetilde{S}_{k1}\), \(\widetilde{S}_{k2}\) and \(\widetilde{S}_{k3}\) are obtained by replacing \(\widehat{Y}_i\) \((i=1,\ldots ,n)\) in \(\widehat{S}_{k1}\), \(\widehat{S}_{k2}\) and \(\widehat{S}_{k3}\) with \({Y}_i\) \((i=1,\ldots ,n)\) respectively. Specifically, \(\widetilde{S}_{k1}=1/{n^2}\sum _{i=1}^n\sum _{j=1}^n|Z_{ki}-Z_{kj}|\Vert Y_i-Y_j\Vert _2\), \(\widetilde{S}_{k2}=1/{n^2}\sum _{i=1}^n\sum _{j=1}^n|Z_{ki}-Z_{kj}|\cdot 1/{n^2}\sum _{i=1}^n\sum _{j=1}^n\Vert Y_i-Y_j\Vert _2\), \(\widetilde{S}_{k3}=1/{n^3}\sum _{i=1}^n\sum _{j=1}^n\sum _{l=1}^n|Z_{ki}-Z_{kl}|\Vert Y_j-Y_l\Vert _2\). Under the discussion in Li et al. (2012b), for any \(\epsilon >0\) and \(0<\gamma <1/2-\kappa \), there exist positive constants \(C_1\) and \(C_2\) such that

$$\begin{aligned}&P\left( |\mathrm{dcov}^2(Z_k,Y)-\widetilde{\mathrm{dcov}}^2(Z_k,Y)|\ge \epsilon \right) \nonumber \\&\quad \le O\left\{ \exp (-C_1\epsilon ^2n^{1-2\gamma })+n\exp (-C_2n^\gamma )\right\} . \end{aligned}$$
(4)

In order to obtain the exponential tail probability bound of \(P(|\mathrm{dcov}^2(Z_k,Y)-\widehat{\mathrm{dcov}}^2(Z_k,Y)|\ge \epsilon )\), we only need to compute \(P(|\widehat{\mathrm{dcov}}^2(Z_k,Y)-\widetilde{\mathrm{dcov}}^2(Z_k,Y)|\ge \epsilon )\). By the definition of \(\widehat{\mathrm{dcov}}^2(Z_k,Y)\) and \(\widetilde{\mathrm{dcov}}^2(Z_k,Y)\), we have

$$\begin{aligned} \left| \widehat{\mathrm{dcov}}^2(Z_k,Y)-\widetilde{\mathrm{dcov}}^2(Z_k,Y)\right| \le \left| \widehat{S}_{k1}-\widetilde{S}_{k1}\right| +\left| \widehat{S}_{k2}-\widetilde{S}_{k2}\right| +2\left| \widehat{S}_{k3}-\widetilde{S}_{k3}\right| . \end{aligned}$$
(5)

We first deal with \(|\widehat{S}_{k1}-\widetilde{S}_{k1}|\), straightforward calculations entail that

$$\begin{aligned} \left| \widehat{S}_{k1}-\widetilde{S}_{k1}\right|= & {} \frac{1}{n^2}\sum _{i=1}^n\sum _{j=1}^n|Z_{ki}-Z_{kj}| \left( \Vert \widehat{Y}_i-\widehat{Y}_j\Vert _2-\Vert Y_i-Y_j\Vert _2\right) \\\le & {} \frac{1}{n^2}\sum _{i=1}^n\sum _{j=1}^n(|Z_{ki}|+|Z_{kj}|)\Big ( L_{ij}(\widehat{\sigma }_1,\widehat{\sigma }_1;\widehat{\sigma }_2,\widehat{\sigma }_2)-L_{ij}(\sigma _1,\sigma _1;\sigma _2,\sigma _2)\Big )\\\le & {} \frac{1}{n^2}\sum _{i=1}^n\sum _{j=1}^n(|Z_{ki}|+|Z_{kj}|)\Big ( L_{ii}(\widehat{\sigma }_1,\sigma _1;\widehat{\sigma }_2,\sigma _2)+L_{jj}(\widehat{\sigma }_1,\sigma _1;\widehat{\sigma }_2,\sigma _2)\Big ), \end{aligned}$$

where

$$\begin{aligned} L_{ij}(\widehat{\sigma }_1,\sigma _1;\widehat{\sigma }_2,\sigma _2) = \sqrt{\left( \frac{X_i}{\widehat{\sigma }_1}-\frac{X_j}{\sigma _1}\right) ^2+ \left( \frac{\varDelta _i}{\widehat{\sigma }_2}-\frac{\varDelta _j}{\sigma _2}\right) ^2}, \end{aligned}$$

and the last inequality obtained by using the triangle inequality. As we all know, for any events \(H_1\) and \(H_2\), it holds

$$\begin{aligned} P(H_1)=P(H_1|H_2)P(H_2)+P(H_1|H_2^\mathrm{c})P(H_2^\mathrm{c})\le P(H_1|H_2)+P(H_2^\mathrm{c}). \end{aligned}$$
(6)

Define events \(A_i=\{|Z_{ki}|< n^{\gamma }\}\) \((i=1,\ldots ,n)\), by (6), condition C1, Bonferroni’s inequality and Markov’s inequality, we obtain

$$\begin{aligned}&P\left( |\widehat{S}_{k1}-\widetilde{S}_{k1}|\ge \epsilon \right) \nonumber \\&\quad \le P\Big (\frac{1}{n^2}\sum _{i=1}^n\sum _{j=1}^n(|Z_{ki}|+|Z_{kj}|) \big (L_{ii}(\widehat{\sigma }_1,\sigma _1;\widehat{\sigma }_2,\sigma _2)+L_{jj}(\widehat{\sigma }_1,\sigma _1;\widehat{\sigma }_2,\sigma _2)\big )\nonumber \\&\quad \ge \epsilon \left| \bigcap _{i=1}^nA_i\right. \Big )+P\Big (\Big (\bigcap _{i=1}^nA_i\Big )^\mathrm{c}\Big ) \nonumber \\&\quad \le P\left( 4n^{\gamma }\cdot \frac{1}{n}\sum _{i=1}^n L_{ii}(\widehat{\sigma }_1,\sigma _1;\widehat{\sigma }_2,\sigma _2) \ge \epsilon \right) +C_3n\exp (-n^{\gamma })\nonumber \\&\quad \le P\left( \frac{1}{n}\sum _{i=1}^n\left( \left| \frac{X_i}{\widehat{\sigma }_1}-\frac{X_i}{{\sigma }_1}\right| +\left| \frac{\varDelta _i}{\widehat{\sigma }_2}-\frac{\varDelta _i}{{\sigma }_2}\right| \right) \ge \frac{\epsilon }{4n^{\gamma }}\right) +C_3n\exp (-n^{\gamma }), \end{aligned}$$
(7)

where \(C_3\) is a positive constant. Straightforward calculations entail that

$$\begin{aligned}&P\left( \frac{1}{n}\sum _{i=1}^n\left( \left| \frac{X_i}{\widehat{\sigma }_1}-\frac{X_i}{{\sigma }_1}\right| +\left| \frac{\varDelta _i}{\widehat{\sigma }_2}-\frac{\varDelta _i}{{\sigma }_2}\right| \right) \ge \frac{\epsilon }{4n^{\gamma }}\right) \nonumber \\&\quad \le P\left( \frac{1}{n}\sum _{i=1}^n\left| \frac{X_i}{\widehat{\sigma }_1}-\frac{X_i}{{\sigma }_1}\right| \ge \frac{\epsilon }{8n^{\gamma }}\right) + P\left( \frac{1}{n}\sum _{i=1}^n\left| \frac{\varDelta _i}{\widehat{\sigma }_2}-\frac{\varDelta _i}{{\sigma }_2}\right| \ge \frac{\epsilon }{8n^{\gamma }}\right) \nonumber \\&\quad \le P\left( \left| \frac{1}{\widehat{\sigma }_1}-\frac{1}{{\sigma }_1}\right| \cdot \frac{1}{n}\sum _{i=1}^nX_i \ge \frac{\epsilon }{8n^{\gamma }}\right) + P\left( \left| \frac{1}{\widehat{\sigma }_2}-\frac{1}{{\sigma }_2}\right| \cdot \frac{1}{n}\sum _{i=1}^n\varDelta _i \ge \frac{\epsilon }{8n^{\gamma }}\right) \nonumber \\&\quad \equiv I_1+I_2. \end{aligned}$$
(8)

We first consider \(I_1\), defining events \(B=\{|\widehat{\sigma }_1-{\sigma }_1|\le \sigma _1/2\}\) and \(C=\{|n^{-1}\sum _{i=1}^nX_i-{\mu }_1|\le \mu _1/2\}\), there exist some positive constants \(C_4\) and \(C_5\) such that

$$\begin{aligned} I_1= & {} P\left( \left| \frac{1}{\widehat{\sigma }_1}-\frac{1}{{\sigma }_1}\right| \cdot \frac{1}{n}\sum _{i=1}^nX_i \ge \frac{\epsilon }{8n^{\gamma }}\right) \nonumber \\\le & {} P\left( \left| \frac{1}{\widehat{\sigma }_1}-\frac{1}{{\sigma }_1}\right| \cdot \frac{1}{n}\sum _{i=1}^nX_i \ge \frac{\epsilon }{8n^{\gamma }}|B,C\right) +P((BC)^{c}) \nonumber \\\le & {} P\left( |\widehat{\sigma }_1^2-{\sigma }_1^2|\ge C_4n^{-\gamma }\epsilon \right) +P(B^{c})+P(C^{c}) \nonumber \\\equiv & {} I_3+P(B^{c})+P(C^{c}) \end{aligned}$$
(9)

for positive constant \(C_4\). Since

$$\begin{aligned} |\widehat{\sigma }_1^2-{\sigma }_1^2| =\left| \frac{1}{n}\sum _{i=1}^n(X_i-\widehat{\mu }_1)^2-{\sigma }_1^2\right| \le \left| \frac{1}{n}\sum _{i=1}^n(X_i-{\mu }_1)^2-{\sigma }_1^2\right| + \left| {\widehat{\mu }}_1-{\mu }_1 \right| ^2, \end{aligned}$$

\(I_3\) can be deduced as

$$\begin{aligned} I_3\le & {} P\left( \left| \frac{1}{n}\sum _{i=1}^n(X_i-{\mu }_1)^2-{\sigma }_1^2\right| \ge \frac{C_4n^{-\gamma }\epsilon }{2}\right) +P\left( \left| {\widehat{\mu }}_1-{\mu }_1 \right| ^2 \ge \frac{C_4n^{-\gamma }\epsilon }{2}\right) \nonumber \\\le & {} 2\exp (-C_5\epsilon ^2n^{1-2\gamma }) + 2\exp (-C_6\epsilon n^{1-\gamma }) \le 2\exp (-C_7\epsilon ^2n^{1-2\gamma }), \end{aligned}$$
(10)

where \(C_5\), \(C_6\) and \(C_7\) are some positive constants. Furthermore, there exists positive constant \(C_8\) such that

$$\begin{aligned} P(B^{c})= & {} P\left( |\widehat{\sigma }_1-{\sigma }_1|\ge \sigma /2\right) \le P\left( |\widehat{\sigma }_1^2-{\sigma }_1^2|\ge \sigma ^2/2\right) \le 2\exp (-C_8n),\nonumber \\ P(C^{c})= & {} P(|n^{-1}\sum _{i=1}^nX_i-{\mu }_1|\ge \mu _1/2)\le 2\exp (-C_8n). \end{aligned}$$
(11)

Combining (9), (10) and (11), we obtain

$$\begin{aligned} I_1\le & {} 2\exp (-C_{7}\epsilon ^2n^{1-2\gamma }) +2\exp (-C_8n) +2\exp (-C_8n)\nonumber \\= & {} O \left( \exp (-C_{9}\epsilon ^2n^{1-2\gamma })\right) , \end{aligned}$$
(12)

for positive constant \(C_{9}\). Using the similar arguments, there exists positive constant \(C_{10}\) such that

$$\begin{aligned} I_2= & {} O\left( \exp (-C_{10}\epsilon ^2n^{1-2\gamma })\right) . \end{aligned}$$
(13)

Following (7), (8), (12) and (13), we have

$$\begin{aligned} P\left( |\widehat{S}_{k1}-\widetilde{S}_{k1}|\ge \epsilon \right)\le & {} O\left( \exp (-C_{9}\epsilon ^2n^{1-2\gamma })\right) \\&\quad +O\left( \exp (-C_{10}\epsilon ^2n^{1-2\gamma })\right) +C_3n\exp (-n^{\gamma })\\= & {} O\left( \exp (-C_{11}\epsilon ^2n^{1-2\gamma }) + n\exp (-n^{\gamma }) \right) . \end{aligned}$$

Using the analogous arguments, along with some tedious calculation, we can obtain similar conclusion of \(P\left( |\widehat{S}_{k2}-\widetilde{S}_{k2}|\ge \epsilon \right) \) and \(P\left( |\widehat{S}_{k3}-\widetilde{S}_{k3}|\ge \epsilon \right) \). Hence, we conclude that

$$\begin{aligned}&P\left( \left| \widehat{\mathrm{dcov}}^2(Z_k,Y)-\widetilde{\mathrm{dcov}}^2(Z_k,Y)\right| \ge \epsilon \right) \\&\quad \le P\left( |\widehat{S}_{k1}-\widetilde{S}_{k1}|\ge \epsilon /4\right) + P\left( |\widehat{S}_{k2}-\widetilde{S}_{k2}|\ge \epsilon /4\right) + P\left( |\widehat{S}_{k3}-\widetilde{S}_{k3}|\ge \epsilon /4\right) \\&\quad =O\left( \exp (-C_{12}\epsilon ^2n^{1-2\gamma })+n\exp (-n^{\gamma })\right) \end{aligned}$$

for positive constant \(C_{12}\). Let \(\epsilon =cn^{-\kappa }\), where \(\kappa \) satisfies \(0<\kappa +\gamma <1/2\). Immediately, there exist some positive constants \(c_1\) and \(c_2\) such that

$$\begin{aligned}&P\left( \left| {\mathrm{dcov}}^2(Z_k,Y)-\widehat{\mathrm{dcov}}^2(Z_k,Y)\right| \ge cn^{-\kappa }\right) \nonumber \\&\quad \le P\left( \left| {\mathrm{dcov}}^2(Z_k,Y)-\widetilde{\mathrm{dcov}}^2(Z_k,Y)\right| \ge \frac{c}{2} n^{-\kappa }\right) +\, P\left( \left| {\widetilde{\mathrm{dcov}}}^2(Z_k,Y)-\widehat{\mathrm{dcov}}^2(Z_k,Y)\right| \ge \frac{c}{2} n^{-\kappa }\right) \nonumber \\&\quad \le O\left( \exp \left\{ -C_1n^{1-2(\kappa +\gamma )}\right\} +n\exp (-C_2n^\gamma )\right) +\,O\left( \exp \left\{ -C_{12}n^{1-2(\kappa +\gamma )}\right\} +n\exp (-n^{\gamma })\right) \nonumber \\&\quad =O\left( \exp \left\{ -c_1n^{1-2(\kappa +\gamma )}\right\} +n\exp (-c_2n^{\gamma })\right) . \end{aligned}$$
(14)

The convergence rate of the numerator of \(\widehat{\omega }_k\) is now achieved. Following similar arguments, we can obtain the same convergence rate of the denominator. Then we have

$$\begin{aligned}&P\left( \max _{1\le k \le p}|\widehat{\omega }_k-{\omega }_k|\ge cn^{-\kappa }\right) \nonumber \\&\quad \le p\max _{1\le k \le p}P\left( |\widehat{\omega }_k-{\omega }_k|\ge cn^{-\kappa }\right) \nonumber \\&\quad = O\left( p\left[ \exp \left\{ -c_1n^{1-2(\kappa +\gamma )}\right\} +n\exp (-c_2n^{\gamma })\right] \right) . \end{aligned}$$
(15)

The first part of Theorem 1 is proved.

We now consider the second part of Theorem 1. If \(\mathcal {A}\not \subseteq \widehat{\mathcal {A}}\), then there must exist some \(k\in \mathcal {A}\) such that \(\widehat{\omega }_k< cn^{-\kappa }\). It follows from condition C2 that \(|\widehat{\omega }_k-{\omega }_k|>cn^{-\kappa }\) for some \(k\in \mathcal {A}\), which implies that \(\{\mathcal {A}\not \subseteq \widehat{\mathcal {A}}\}\subseteq \{|\widehat{\omega }_k-{\omega }_k|>cn^{-\kappa }\) for some \(k\;\in \mathcal {A}\}\). As a result, \(\{\max _{k\in \mathcal {A}}|\widehat{\omega }_k-{\omega }_k|\le cn^{-\kappa }\}\subseteq \{\mathcal {A}\subseteq \widehat{\mathcal {A}}\}\). Using (15), we have

$$\begin{aligned}&P\left( \mathcal {A}\subseteq \widehat{\mathcal {A}}\right) \ge P\left( \max _{k\in \mathcal {A}}\big |\widehat{\omega }_k-{\omega }_k\big | \le cn^{-\kappa }\right) \\&\quad \ge 1-O\left( a\left[ \exp \left\{ -c_1n^{1-2(\kappa +\gamma )}\right\} +n\exp (-c_2n^{\gamma })\right] \right) , \end{aligned}$$

where \(a=|\mathcal {A}|\). Thus, the proof of Theorem 1 is completed. \(\square \)

Proof of Theorem 2

Under condition C2, noting that \(\min _{k\in \mathcal {A}}\omega _k \ge 2cn^{-\kappa }\) and combining it with (15) and the assumption \({\omega }_k=0\) (\(k \notin \mathcal {A}\)), we have

$$\begin{aligned}&P\left( \min _{k\in \mathcal {A}} \widehat{\omega }_k \le \max _{k \notin \mathcal {A}} \widehat{\omega }_k\right) \\&\quad =P\left( \max _{k \notin \mathcal {A}} \widehat{\omega }_k-\max _{k \notin \mathcal {A}} {\omega }_k- \min _{k\in \mathcal {A}}\widehat{\omega }_k+\min _{k\in \mathcal {A}}{\omega }_k\ge \min _{k\in \mathcal {A}}{\omega }_k\right) \nonumber \\&\quad \le P\left( \max _{k \notin \mathcal {A}}\left| \widehat{\omega }_k-{\omega }_k\right| \ge cn^{-\kappa }\right) + P\left( \max _{k \in \mathcal {A}}\left| \widehat{\omega }_k-{\omega }_k\right| \ge cn^{-\kappa }\right) \nonumber \\&\quad \le 2P\left( \max _{1\le k \le p}\left| \widehat{\omega }_k-{\omega }_k\right| \ge cn^{-\kappa }\right) \nonumber \\&\quad = O\left( p\left[ \exp \left\{ -c_1n^{1-2(\kappa +\gamma )}\right\} +n\exp (-c_2n^{\gamma })\right] \right) , \end{aligned}$$

so

$$\begin{aligned} P\left( \max _{k \notin \mathcal {A}} \widehat{\omega }_k <\min _{k\in \mathcal {A}} \widehat{\omega }_k\right) \ge 1-O\left( p\left[ \exp \left\{ -c_1n^{1-2(\kappa +\gamma )}\right\} +n\exp (-c_2n^\gamma )\right] \right) , \end{aligned}$$

which completes the proof of Theorem 2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, Y. & Cui, H. Model-free feature screening via distance correlation for ultrahigh dimensional survival data. Stat Papers 62, 2711–2738 (2021). https://doi.org/10.1007/s00362-020-01210-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-020-01210-3

Keywords

Navigation