Skip to main content

Advertisement

Log in

Reliable Detection of Somatic Mutations for Pancreatic Cancer in Endoscopic Ultrasonography-Guided Fine Needle Aspirates with Next-Generation Sequencing: Implications from a Prospective Cohort Study

  • Original Article
  • Published:
Journal of Gastrointestinal Surgery Aims and scope

Abstract

Background or Purpose

Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed by endoscopic ultrasound-guided fine needle aspiration (EUS-FNA). However, the diagnostic adequacy of EUS-FNA is often limited by low cellularity leading to inconclusive results. We aimed to investigate the feasibility and added utility of targeted next-generation sequencing (NGS) on PDAC EUS-FNAs.

Methods

EUS-FNAs were prospectively performed on 59 patients with suspected PDAC (2014-2017) at a high-volume center. FNAs were analyzed for the presence of somatic mutations using NGS to supplement cytopathologic evaluations and were compared to surgical specimens and circulating tumor DNA (ctDNA).

Results

Fifty-nine patients with suspected PDAC were evaluated, and 52 were diagnosed with PDAC on EUS-FNA. Four of the remaining seven patients had inconclusive EUS-FNAs and were ultimately diagnosed with PDAC after surgical resection. Of these 56 cases of PDAC, 48 (85.7%) and 18 (32.1%) harbored a KRAS and/or TP53 mutation on FNA NGS, respectively. Particularly, in the four inconclusive FNA PDAC diagnoses (false negatives), half harbored KRAS mutations on FNA. No KRAS/TP53 mutation was found in remaining three non-PDAC cases. All EUS-FNA detected KRAS mutations were detected in 16 patients that underwent primary tumor NGS (100% concordance), while 75% KRAS concordance was found between FNA and ctDNA NGS.

Conclusion

Targeted NGS can reliably detect KRAS mutations from EUS-FNA samples and exhibits high KRAS mutational concordance with primary tumor and ctDNA. This suggests targeted NGS of EUS-FNA samples may enable preoperative ctDNA prognostication using digital droplet PCR and supplement diagnoses in patients with inconclusive EUS-FNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):730.

    Article  Google Scholar 

  2. Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med. 2014;371(11):1039–49.

    Article  CAS  PubMed  Google Scholar 

  3. Hruban RH, Maitra A, Kern SE, Goggins M. Precursors to pancreatic cancer. Gastroenterol Clin North Am. 2007;36(4):831-vi.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Imaoka H, Sasaki M, Hashimoto Y, Watanabe K, Ikeda M. New Era of Endoscopic Ultrasound-Guided Tissue Acquisition: Next-Generation Sequencing by Endoscopic Ultrasound-Guided Sampling for Pancreatic Cancer. J Clin Med. 2019;8(8):1173.

    Article  CAS  PubMed Central  Google Scholar 

  5. Hirata K, Kuwatani M, Suda G, et al. A Novel Approach for the Genetic Analysis of Biliary Tract Cancer Specimens Obtained Through Endoscopic Ultrasound-Guided Fine Needle Aspiration Using Targeted Amplicon Sequencing. Clin Transl Gastroenterol 2019;10(3):e00022.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Trisolini E, Armellini E, Paganotti A, et al. KRAS mutation testing on all non-malignant diagnosis of pancreatic endoscopic ultrasound-guided fine-needle aspiration biopsies improves diagnostic accuracy. Pathology. 2017;49(4):379–86.

    Article  CAS  PubMed  Google Scholar 

  7. Hung YP, Lovitch SB, Qian X. Histiocytic sarcoma: New insights into FNA cytomorphology and molecular characteristics. Cancer Cytopathol. 2017;125(8):604-614.

    Article  CAS  PubMed  Google Scholar 

  8. Larson BK, Tuli R, Jamil LH, Lo SK, Deng N, Hendifar AE. Utility of Endoscopic Ultrasound-Guided Biopsy for Next-Generation Sequencing of Pancreatic Exocrine Malignancies. Pancreas. 2018;47(8):990-995.

    Article  PubMed  Google Scholar 

  9. Bellevicine C, Sgariglia R, Malapelle U, et al. Young investigator challenge: Can the Ion AmpliSeq Cancer Hotspot Panel v2 be used for next-generation sequencing of thyroid FNA samples?. Cancer Cytopathol. 2016;124(11):776-784.

    Article  CAS  PubMed  Google Scholar 

  10. Yoon KA, Woo SM, Kim YH, et al. Comprehensive Cancer Panel Sequencing Defines Genetic Diversity and Changes in the Mutational Characteristics of Pancreatic Cancer Patients Receiving Neoadjuvant Treatment. Gut Liver. 2019;13(6):683-689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nikiforov YE, Carty SE, Chiosea SI, et al. Impact of the Multi-Gene ThyroSeq Next-Generation Sequencing Assay on Cancer Diagnosis in Thyroid Nodules with Atypia of Undetermined Significance/Follicular Lesion of Undetermined Significance Cytology. Thyroid. 2015;25(11):1217-1223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma K, Zhao X, Li H, et al. Massive parallel sequencing of mitochondrial DNA genomes from mother-child pairs using the ion torrent personal genome machine (PGM). Forensic Sci Int Genet. 2018;32:88-93.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao X, Ma K, Li H, et al. Multiplex Y-STRs analysis using the ion torrent personal genome machine (PGM). Forensic Sci Int Genet. 2015;19:192-196.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang B, Penton CR, Xue C, Wang Q, Zheng T, Tiedje JM. Evaluation of the Ion Torrent Personal Genome Machine for Gene-Targeted Studies Using Amplicons of the Nitrogenase Gene nifH. Appl Environ Microbiol. 2015;81(13):4536-4545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hwang SM, Lee KC, Lee MS, Park KU. Comparison of Ion Personal Genome Machine Platforms for the Detection of Variants in BRCA1 and BRCA2. Cancer Res Treat. 2018;50(1):255-264.

    Article  CAS  PubMed  Google Scholar 

  16. Valero V 3rd, Saunders TJ, He J, et al. Reliable Detection of Somatic Mutations in Fine Needle Aspirates of Pancreatic Cancer With Next-generation Sequencing: Implications for Surgical Management. Ann Surg. 2016;263(1):153-161.

    Article  PubMed  Google Scholar 

  17. Yu J, Sadakari Y, Shindo K, et al. Digital next-generation sequencing identifies low-abundance mutations in pancreatic juice samples collected from the duodenum of patients with pancreatic cancer and intraductal papillary mucinous neoplasms. Gut. 2017;66(9):1677-1687.

    Article  CAS  PubMed  Google Scholar 

  18. Nakajima T, Yasufuku K, Suzuki M, et al. Assessment of epidermal growth factor receptor mutation by endobronchial ultrasound-guided transbronchial needle aspiration. Chest. 2007;132(2):597-602.

    Article  CAS  PubMed  Google Scholar 

  19. Garcia-Olivé I, Monsó E, Andreo F, et al. Endobronchial ultrasound-guided transbronchial needle aspiration for identifying EGFR mutations. Eur Respir J. 2010;35(2):391-395.

    Article  PubMed  Google Scholar 

  20. Billah S, Stewart J, Staerkel G, Chen S, Gong Y, Guo M. EGFR and KRAS mutations in lung carcinoma: molecular testing by using cytology specimens. Cancer Cytopathol. 2011;119(2):111-117.

    Article  CAS  PubMed  Google Scholar 

  21. Santis G, Angell R, Nickless G, et al. Screening for EGFR and KRAS mutations in endobronchial ultrasound derived transbronchial needle aspirates in non-small cell lung cancer using COLD-PCR. PLoS One. 2011;6(9):e25191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Koivunen JP, Mermel C, Zejnullahu K, et al. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res. 2008;14(13):4275-4283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sakairi Y, Nakajima T, Yasufuku K, et al. EML4-ALK fusion gene assessment using metastatic lymph node samples obtained by endobronchial ultrasound-guided transbronchial needle aspiration. Clin Cancer Res. 2010;16(20):4938-4945.

    Article  CAS  PubMed  Google Scholar 

  24. van Eijk R, Licht J, Schrumpf M, et al. Rapid KRAS, EGFR, BRAF and PIK3CA mutation analysis of fine needle aspirates from non-small-cell lung cancer using allele-specific qPCR. PLoS One. 2011;6(3):e17791. Published 2011 Mar 8.

  25. Nakajima T, Yasufuku K, Nakagawara A, Kimura H, Yoshino I. Multigene mutation analysis of metastatic lymph nodes in non-small cell lung cancer diagnosed by endobronchial ultrasound-guided transbronchial needle aspiration. Chest. 2011;140(5):1319–24.

    Article  PubMed  Google Scholar 

  26. Schuurbiers OC, Looijen-Salamon MG, Ligtenberg MJ, van der Heijden HF. A brief retrospective report on the feasibility of epidermal growth factor receptor and KRAS mutation analysis in transesophageal ultrasound- and endobronchial ultrasound-guided fine needle cytological aspirates. J Thorac Oncol. 2010;5(10):1664-1667.

    Article  PubMed  Google Scholar 

  27. Sho S, Court CM, Kim S, et al. Digital PCR Improves Mutation Analysis in Pancreas Fine Needle Aspiration Biopsy Specimens. PLoS One. 2017;12(1):e0170897. Published 2017 Jan 26.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Park JK, Lee YJ, Lee JK, Lee KT, Choi YL, Lee KH. KRAS mutation analysis of washing fluid from endoscopic ultrasound-guided fine needle aspiration improves cytologic diagnosis of pancreatic ductal adenocarcinoma. Oncotarget. 2017;8(2):3519-3527.

    Article  PubMed  Google Scholar 

  29. Morris S, Subramanian J, Gel E, et al. Performance of next-generation sequencing on small tumor specimens and/or low tumor content samples using a commercially available platform. PLoS One. 2018;1:13(4).

    Google Scholar 

  30. Nishizawa N, Harada H, Kumamoto Y, et al. Diagnostic potential of hypermethylation of the cysteine dioxygenase 1 gene (CDO1) promoter DNA in pancreatic cancer. Cancer Sci. 2019;110(9):2846-2855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guibert N, Tsukada H, Hwang DH, et al. Liquid biopsy of fine-needle aspiration supernatant for lung cancer genotyping. Lung Cancer. 2018;122:72-75.

    Article  PubMed  Google Scholar 

  32. Bardeesy N, Sharpless NE, DePinho RA, Merlino G. The genetics of pancreatic adenocarcinoma: a roadmap for a mouse model. Semin Cancer Biol. 2001;11(3):201-218.

    Article  CAS  PubMed  Google Scholar 

  33. Bardeesy N, DePinho RA. Pancreatic cancer biology and genetics. Nat Rev Cancer 2002;2(12):897–909.

    Article  CAS  PubMed  Google Scholar 

  34. Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2006;20(10):1218-1249.

    Article  CAS  PubMed  Google Scholar 

  35. McCarthy DM, Maitra A, Argani P, et al. Novel markers of pancreatic adenocarcinoma in fine-needle aspiration: mesothelin and prostate stem cell antigen labeling increases accuracy in cytologically borderline cases. Appl Immunohistochem Mol Morphol. 2003;11(3):238-243.

    Article  CAS  PubMed  Google Scholar 

  36. Morgan TK, Hardiman K, Corless CL, et al. Human pancreatic cancer fusion 2 (HPC2) 1-B3: a novel monoclonal antibody to screen for pancreatic ductal dysplasia. Cancer Cytopathol. 2013;121(1):37-46.

    Article  CAS  PubMed  Google Scholar 

  37. Dumonceau JM, Deprez PH, Jenssen C, et al. Indications, results, and clinical impact of endoscopic ultrasound (EUS)-guided sampling in gastroenterology: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline - Updated January 2017. Endoscopy. 2017;49(7):695-714.

    Article  PubMed  Google Scholar 

  38. Fuccio L, Hassan C, Laterza L, et al. The role of K-ras gene mutation analysis in EUS-guided FNA cytology specimens for the differential diagnosis of pancreatic solid masses: a meta-analysis of prospective studies. Gastrointest Endosc. 2013;78(4):596-608.

    Article  PubMed  Google Scholar 

  39. Maitra A, Hruban RH. Pancreatic cancer. Annu Rev Pathol. 2008;3:157-188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ascierto PA, Kirkwood JM, Grob JJ, et al. The role of BRAF V600 mutation in melanoma. J Transl Med. 2012;10:85. Published 2012 Jul 9.

  41. de Biase D, Visani M, Acquaviva G, et al. The Role of Next-Generation Sequencing in the Cytologic Diagnosis of Pancreatic Lesions. Arch Pathol Lab Med. 2018;142(4):458-464.

    Article  PubMed  Google Scholar 

  42. Sibinga Mulder BG, Mieog JS, Handgraaf HJ, et al. Targeted next-generation sequencing of FNA-derived DNA in pancreatic cancer. J Clin Pathol. 2017;70(2):174-178.

    Article  PubMed  Google Scholar 

  43. Chantrill LA, Nagrial AM, Watson C, et al. Precision Medicine for Advanced Pancreas Cancer: The Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) Trial. Clinical cancer research : an official journal of the American Association for Cancer Research. 2015;21(9):2029-2037.

    Article  CAS  Google Scholar 

  44. Aung KL, Fischer SE, Denroche RE, et al. Genomics-Driven Precision Medicine for Advanced Pancreatic Cancer: Early Results from the COMPASS Trial. Clinical cancer research : an official journal of the American Association for Cancer Research. 2018;24(6):1344-1354.

    Article  CAS  Google Scholar 

  45. Pishvaian MJ, Bender RJ, Halverson D, et al. Molecular Profiling of Patients with Pancreatic Cancer: Initial Results from the Know Your Tumor Initiative. Clinical cancer research : an official journal of the American Association for Cancer Research. 2018;24(20):5018-5027.

    Article  CAS  Google Scholar 

  46. Krepline AN, Bliss L, Geurts J, et al. Role of Molecular Profiling of Pancreatic Cancer After Neoadjuvant Therapy: Does it Change Practice?. J Gastrointest Surg. 2020;24(2):235-242.

    Article  PubMed  Google Scholar 

  47. Roychowdhury S, Chinnaiyan AM. Translating cancer genomes and transcriptomes for precision oncology. CA Cancer J Clin. 2016;66(1):75-88.

    Article  PubMed  Google Scholar 

  48. Habib JR, Yu J. Circulating tumor cells in pancreatic cancer: a review. J Pancreatol 2019; 2:54–59.

    Article  Google Scholar 

  49. Habib JR, Yin L, Yu J. Pancreatic ductal adenocarcinoma: the role of circulating tumor DNA. J Pancreatol. 2019;2(3)72-75.

    Article  Google Scholar 

  50. Groot VP, Mosier S, Javed AA, et al. Circulating Tumor DNA as a Clinical Test in Resected Pancreatic Cancer. Clin Cancer Res. 2019;25(16):4973-4984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gemenetzis G, Groot VP, Yu J, et al. Circulating Tumor Cells Dynamics in Pancreatic Adenocarcinoma Correlate With Disease Status: Results of the Prospective CLUSTER Study. Ann Surg. 2018;268(3):408-420.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the grant from the Sol Goldman Pancreatic Cancer Research Grant (to JH).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: JRH, YZ, LY, JY, and JH. Administrative support: RAB, WB, CLW, ES, JY, and JH. Provision of study materials: AAJ, DD, and JT. Collection and assembly of data: AAJ, DD, JT, MW, and SZA. Data analysis and interpretation: JRH, YZ, LY, JY, and JH. Manuscript writing: All authors. Final approval of manuscript: All authors. Obtained funding: JY and JH. Study supervision: JY and JH.

Corresponding authors

Correspondence to Jun Yu or Jin He.

Ethics declarations

Ethics Approval and Consent to Participate

This study was approved by the Institutional Review Board (IRB) of the Johns Hopkins Hospital and informed consent was signed by all patients.

Conflict of Interest

 ES declares personal fees from Boston Scientific and Medtronic outside the submitted work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Figure S1.

EUS-FNA mutation profile in study population. (JPG 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habib, J.R., Zhu, Y., Yin, L. et al. Reliable Detection of Somatic Mutations for Pancreatic Cancer in Endoscopic Ultrasonography-Guided Fine Needle Aspirates with Next-Generation Sequencing: Implications from a Prospective Cohort Study. J Gastrointest Surg 25, 3149–3159 (2021). https://doi.org/10.1007/s11605-021-05078-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-021-05078-y

Keywords

Navigation