Skip to main content

Advertisement

Log in

Potential Early Markets for Fusion Energy

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

We examine potential early markets for fusion energy and their projected cost targets, based on analysis and synthesis of many relevant, recent studies and reports. Seeking to provide guidance to ambitious fusion developers aspiring to enable commercial deployment before 2040, we examine cost requirements for fusion-generated electricity, process heat, and hydrogen production based on today’s market prices but with various adjustments relating to possible scenarios in 2035, such as “business-as-usual,” high renewables penetration, and carbon pricing up to 100 $/\(\hbox {tCO}_2\). Key findings are that fusion developers should consider focusing initially on high-priced global electricity markets and consider including integrated thermal storage, depending on techno-economic factors, in order to maximize revenue and compete in markets with high renewables penetration. Process heat and hydrogen production will be tough early markets for fusion, but may open up to fusion as markets evolve and if fusion’s levelized cost of electricity falls below 50 $/\(\hbox {MWh}_{\mathrm {e}}\). Finally, we discuss potential ways for a fusion plant to increase revenue via cogeneration (e.g., desalination, direct air capture, or district heating) and to lower capital costs (e.g., by minimizing construction times and interest or by retrofitting coal plants).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. National Academies of Sciences, Engineering, and Medicine, Bringing Fusion to the U.S. Grid (NAP, Washington, DC, 2021), https://doi.org/10.17226/25991

  2. National Academies of Sciences, Engineering, and Medicine, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda (NAP, Washington, 2019), https://doi.org/10.17226/25259

  3. C.L. Nehl, R. Umstattd, W.R. Regan, S.C. Hsu, P.B. McGrath, J. Fusion Energy 38, 506 (2019). https://doi.org/10.1007/s10894-019-00226-4

    Article  Google Scholar 

  4. ARPA-E ALPHA program, https://arpa-e.energy.gov/technologies/programs/alpha

  5. ARPA-E BETHE program, https://arpa-e.energy.gov/technologies/programs/bethe

  6. ARPA-E GAMOW program, https://arpa-e.energy.gov/technologies/programs/gamow

  7. T.L. Peckinpaugh, R.P. Stimers, M.L. O’Neill (2018). Invigorated Federal Interest in Fusion Energy Presents Opportunities and Questions for Growing Private Fusion Energy Sector, https://www.klgates.com/Invigorated-Federal-Interest-in-Fusion-Energy-Presents-Opportunities-and-Questions-for-Growing-Private-Fusion-Energy-Sector-10-12-2018

  8. A.C. Roma, S.S. Desai (2020). The Regulation of Fusion–A Practical and Innovation-Friendly Approach, https://www.hoganlovells.com/~/media/hogan-lovells/pdf/2020-pdfs/2020_02_14_hogan_lovells_the_regulation_of_fusion_a-practical.pdf

  9. Fusion Industry Association (2020). Igniting the Fusion Revolution in America, https://www.fusionindustryassociation.org/post/fusion-regulatory-white-paper

  10. D.R. Lewis, J.S. Merrifield, S.L. Fowler (2020). Considerations for Regulation of Fusion-Based Power Generation Devices, https://www.pillsburylaw.com/images/content/1/4/v4/144195/Article-Licensing-Fusion-Power-Nov2020.pdf

  11. DOE, NRC, and FIA Public Forum (2020). Virtual Public Forum on a Regulatory Framework for Fusion, https://science.osti.gov/fes/Community-Resources/Workshop-Reports/DOE-NRC-FIA-Public-Forum

  12. World Bank Group, State and Trends of Carbon Pricing 2019 (World Bank, Washington, DC, 2019). http://hdl.handle.net/10986/31755

  13. E. Ingersoll, K. Gogan, J. Herter, A. Foss (2020). Cost and Performance Requirements for Flexible Advanced Nuclear Plants in Future U.S. Power Markets, https://www.lucidcatalyst.com/arpa-e-report-nuclear-costs

  14. S. Woodruff, E. Ingersoll, A. Foss, R.L. Miller (2020). Revisit of the 2017 Costing for Four ARPA-E ALPHA Concepts, https://arpa-e.energy.gov/technologies/publications/updated-cost-study-and-final-report-four-alpha-fusion-concepts

  15. C. Turchi, G. Heath (2013). Molten Salt Power Tower Cost Model for the System Advisor Model, https://www.nrel.gov/docs/fy13osti/57625.pdf

  16. E. Bubelis, W. Hering, S. Perez-Martin, Fus. Eng. Des. 146, 2334 (2019). https://doi.org/10.1016/j.fusengdes.2019.03.183

    Article  Google Scholar 

  17. Lazard (2019). Lazard’s Levelized Cost of Energy Analysis–Version 13.0, https://www.lazard.com/media/451086/lazards-levelized-cost-of-energy-version-130-vf.pdf

  18. U.S. Energy Information Administration (2020). Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2020, https://www.eia.gov/outlooks/aeo/pdf/electricity_generation.pdf

  19. J. Platt, J.O. Pritchard, D. Bryant (2017). Analyzing energy technologies and policies using DOSCOE, https://dx.doi.org/10.2139/ssrn.3015424

  20. BP (2020). Statistical Review of World Energy, https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-natural-gas.pdf

  21. H. Ritchie, M. Roser (2017). Fossil Fuels, https://ourworldindata.org/fossil-fuels

  22. N.A. Sepulveda, J.D. Jenkins, F.J. de Sisternes, R.K. Lester, Joule 2, 2403 (2018). https://doi.org/10.1016/j.joule.2018.08.006

    Article  Google Scholar 

  23. M. Ford, A. Abdullah, Risk Anal. (2021). https://doi.org/10.1111/risa.13727

    Article  Google Scholar 

  24. MIT Energy Initiative (2018). The Future of Nuclear Energy in a Carbon-Constrained World, https://energy.mit.edu/wp-content/uploads/2018/09/The-Future-of-Nuclear-Energy-in-a-Carbon-Constrained-World.pdf

  25. BloombergNEF (2019). Hydrogen: The Economics of Industrial Heat in Cement, Aluminum and Glass, https://about.bnef.com/product

  26. IEA (2019). The Future of Hydrogen, https://www.iea.org/reports/the-future-of-hydrogen

  27. BloombergNEF (2020). Hydrogen: The Economics of Production from Fossil Fuels With CCS, https://about.bnef.com/product

  28. BloombergNEF (2019). Hydrogen: The Economics of Production from Renewables, https://about.bnef.com/product

  29. S.P.S. Badwal, S. Giddey, C. Munnings, Energy Environ. 2, 473 (2012). https://doi.org/10.1002/wene.50

    Article  Google Scholar 

  30. M. Serban, M.A. Lewis, C.L. Marshall, R.D. Doctor, Energy Fuels 17, 705 (2003). https://doi.org/10.1021/ef020271q

    Article  Google Scholar 

  31. Hydrogen Production: Thermochemical Water Splitting, https://www.energy.gov/eere/fuelcells/hydrogen-production-thermochemical-water-splitting

  32. M.L. Carreon, Plasma Res. Express 1, 043001 (2019). https://doi.org/10.1088/2516-1067/ab5a30

    Article  ADS  Google Scholar 

  33. BloombergNEF (2019). Hydrogen: Making Green Ammonia and Fertilizers, https://about.bnef.com/product

  34. BloombergNEF (2019). Hydrogen: The Economics of Low-Carbon Methanol, https://about.bnef.com/product

  35. BloombergNEF (2019). Hydrogen: Making Fossil-Free Steel, https://about.bnef.com/product

  36. A. Boretti, L. Rosa, npj Clean Water 2, 15 (2019). https://doi.org/10.1038/s41545-019-0039-9

  37. J. Robbins (2019). As Water Scarcity Increases, Desalination Plants Are on the Rise, https://e360.yale.edu/features/as-water-scarcity-increases-desalination-plants-are-on-the-rise

  38. World Bank Group, The Role of Desalination in an Increasingly Water-Scarce World (World Bank, Washington, DC, 2019). http://hdl.handle.net/10986/31416

  39. IRENA (2012). Water Desalination Using Renewable Energy, https://irena.org/-/media/Files/IRENA/Agency/Publication/2012/IRENA-ETSAP-Tech-Brief-I12-Water-Desalination.pdf

  40. S. Qvist (2020). Nuclear Power Plants as Integrated Energy Centres, unpublished

  41. IPCC (2018). Global Warming of \(1.5^\circ \), https://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf

  42. R. Hanna, A. Abdulla, Y. Xu, D.G. Victor, Nature Comm. 12, 368 (2021). https://doi.org/10.1038/s41467-020-20437-0

    Article  Google Scholar 

  43. G. Peters, O. Geden, Nature. Clim. Change 7, 619 (2017). https://doi.org/10.1038/nclimate3369

    Article  ADS  Google Scholar 

  44. M. Fasihi, O. Efimova, C. Breyer, J. Clean. Prod. 224, 957 (2019). https://doi.org/10.1016/j.jclepro.2019.03.086

    Article  Google Scholar 

  45. IAEA (2017). Opportunities for Cogeneration with Nuclear Energy, Report No. NP-T-4.1, https://www-pub.iaea.org/MTCD/Publications/PDF/P1749_web.pdf

  46. Clean Air Task Force (2018). Advanced Nuclear Energy, https://www.catf.us/wp-content/uploads/2018/04/Advanced_Nuclear_Energy.pdf

  47. S. Qvist, P. Gladysz, L. Bartela, A. Sowizdzal, Energies 14, 120 (2021). https://doi.org/10.3390/en14010120

    Article  Google Scholar 

  48. World Resources Institute (2019). Global Power Plant Database, https://datasets.wri.org/dataset/globalpowerplantdatabase

  49. S. Woodruff, R. Miller, D. Chan, S. Routh, S. Basu, S. Rao (2017). Conceptual Cost Study for a Fusion Power Plant Based on Four Technologies from the DOE ARPA-E ALPHA Program, https://doi.org/10.13140/RG.2.2.24116.55688

  50. J. Cassibry, R. Cortez, M. Stanic, A. Watts, W. Seidler, R. Adams, G. Statham, L. Fabisinski, J. Spacecraft Rockets 52, 595 (2015). https://doi.org/10.2514/1.A32782

    Article  ADS  Google Scholar 

  51. G.A. Wurden, T.E. Weber, P.J. Turchi, P.B. Parks, T.E. Evans, S.A. Cohen, J.T. Cassibry, E.M. Campbell, J. Fusion Energy 35, 123 (2016). https://doi.org/10.1007/s10894-015-0034-1

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the insights and input provided by many people, especially Bob Mumgaard, Brandon Sorbom, Shiaoching Tse, and Ally Yost (Commonwealth Fusion Systems), Joe Chaisson (Clean Air Task Force, Energy Options Network), Eric Ingersoll (Lucid Catalyst), Armond Cohen (Clean Air Task Force), and Richard Pearson (Kyoto Fusioneering). We thank Jennifer Steinhilber (Booz Allen Hamilton) for assistance with several of the figures. Reference herein to any specific non-federal person or commercial entity, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof or its contractors or subcontractors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott C. Hsu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors’ affiliation does not imply endorsement of this work by ARPA-E, DOE, or the U.S. Government.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 114 kb)

Supplementary material 2 (XLSX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Handley, M.C., Slesinski, D. & Hsu, S.C. Potential Early Markets for Fusion Energy. J Fusion Energ 40, 18 (2021). https://doi.org/10.1007/s10894-021-00306-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10894-021-00306-4

Keywords

Navigation