Skip to main content

Advertisement

Log in

Review on Spray-Assisted Solar Desalination: Concept, Performance and Modeling

  • Review--Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This article presents a review on performance, thermal modeling and numerical modeling of spray-assisted solar desalination systems (SLTD). Spray assisted has the benefits of higher rates of heat and mass transfer, the ability to work at moderately low-temperature differences, ease of system design, less scaling and fouling issues, and lower initial cost than conventional thermal desalination. Thermal models are handy tools to expect the performance of well-designed SLTD before its fabrication and saves cost and time. Software applications play a crucial role in developing and analyzing the mathematical model and assessing the performance of SLTD. CFD simulation is useful in the analysis as it can show the precise distribution of temperature inside the evaporation tower. It is used to model and analyze the evaporation process of brine spray and a powerful tool for guiding the selection of operating conditions. Highest productivity obtained as 9 L/m2 per day, and the maximum daily efficiency was 87%. Maximum value of the performance ratio reached 1.42 in the double stage constant heat source spray assisted desalination system. Steam jet ejector contributes over 40% of the total energy degradation. Rate of production and performance ratio increases with the increase in top brine temperature. Productivity of SLTD was more compared to conventional distillation systems due to higher rate of heat transfer and a higher rate of evaporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Availability of Data and Material

This is a review article of previous work. Critical analysis has been done with reference to earlier research work. Hence, there is no data used.

Abbreviations

A :

Area, m2

BPE:

Boiling point elevation

C :

Specific heat, kJ/kg

C p :

Specific heat, kJ/kg

C ps :

Specific heat of seawater (J/kgK)

C pv :

Specific heat of vapor (J/kgK)

C pw :

Specific heat of water (J/kgK)

D :

Diameter (m)

\(\dot{D}\) :

Production rate, (kg/s)

\(\dot{E}\) :

Exergy destruction rate, (kw)

g :

Gravitational acceleration constant (m/sec2)

h :

Specific enthalpy, (kJ/kg), enthalpy (J/kg), heat transfer coefficient(W/m2K)

h fg :

Latent heat of vaporization (J/kg)

H :

Solar radiation, (W/m2)

I :

Solar irradiance (W/m2)

k :

Thermal conductivity (W/mK)

L :

Latent heat of water, J/kg

m :

Flow rate, l/h

M :

Productivity (l/h), mass

\(\dot{m}\) :

Mass flow rate, (kg/s)

\(\dot{M}\) :

Mass flow rate, (kg/s)

\(\left( {{\text{MC}}} \right)_{d}\) :

Thermal capacity

Nu:

Nusselt number, dimensionless

P :

Pressure (Pa), pumping power (W)

p :

Pressure (Pa)

PCF:

Motive steam pressure correction factor

P p :

Pump power (W)

Pr:

Prandtl number, dimensionless

PR:

Production ratio, performance ratio

Q :

Heat flux (kW), heat transfer rate between condenser and cooling seawater (W)

R :

Universal gas constant (J/k-mol)

r :

Recycling ratio, dimensionless

Re:

Reynolds number, dimensionless

s :

Specific entropy (kJ/kg-K)

Sc:

Schmidt number, dimensionless

Sh:

Sherwood number, dimensionless

T :

Temperature, °C

t :

Time, min

TCF:

Entrained vapor temperature correction factor

∆t :

Differential time element

U :

Overall heat transfer coefficient (W/m2K)

w :

Entrainment ratio

w :

Power, W

X :

Salinity (g/kg

t, t + ∆t :

Value of the parameter at this time instant

0 :

Ambient

a :

Ambient

amb:

Ambient

Av:

Average

ave:

Average

b :

Brine

c :

Condenser, condensation

ci:

Cold inlet

c, in:

Condenser inlet

c, out:

Condenser outlet

co:

Cold outlet

cond:

Condenser

cs:

Condenser surface

cw:

Cooling water

d :

Distillate, destruction, daily

dist:

Distillate

e :

Evaporator, entrainment, evaporation

ev:

Evaporator water column

evap:

Evaporator

f :

Feed

H :

Heating

h :

Heating, hourly

hi:

Hot inlet

ho:

Hot outlet

i :

iTh stage, inner

in:

Inlet

l :

Liquid

loss:

Temperature loss in demister, heat loss

o :

Outlet, outer

p :

Positive steam

ps:

Distillate column

R :

Heat recovery

s :

Surface

S :

Solar water collector

sat:

Saturation

sc:

Solar collector

sc, in:

Solar collector inlet

sc, out:

Solar collector outlet

sl:

Solar collector

st:

Storage Tank

sw:

Seawater

u :

Useful

v :

Vapor

v, eq:

Vapour at equilibrium

vs:

Vapor space

w :

Water

II:

Second-law

η :

Efficiency

θ :

Dimensionless temperature difference

:

Difference

μ :

Dynamic viscosity (pa s)

v :

Kinematic viscosity (m2/s)

ρ :

Density (kg/m3

CC:

Cooling coil

CV:

Control valve

EC:

Condensation tower

ET:

Evaporation tower

FM:

Flow meter

FWR:

Fresh water reservoir

GOR:

Gain output ratio

HDH:

Humidification-dehumidification

SS:

Solar still

SLTD:

Spray assisted low-temperature desalination

HEX:

Heat exchanger

MED:

Multiple effect distillation

MSF:

Multi-stage flash

PR:

Productivity rate

SWC:

Solar water collector

TC:

Thermocouples

TDS:

Total dissolved solids

TES:

Thermal energy Storage

References

  1. Kumar, A.; Prakash, O.: Solar Desalination Technology. Springer, Berlin (2019) https://doi.org/10.1007/978-981-13-6887-5

    Book  Google Scholar 

  2. Kant, R.; Prakash, O.; Tripathi, R.; Kumar, A.: Exergy Analysis of Active and Passive Solar Still. In: Kumar, A.; Prakash, O. (Eds.) Solar Desalination Technology. Green Energy and Technology. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-6887-5_12

    Chapter  Google Scholar 

  3. Rani, A.; Suresh, S.; Kumar, A.: Review on thermal modeling of solar desalination systems. Res. J. Chem. Environ 23, 90–102 (2019)

    Google Scholar 

  4. Pugsley, A.; Zacharopoulos, A.; Mondol, J.D.: Solar Desalination Potential Around the World. Renewable Energy Powered Desalination Handbook, p. 47–90. Elsevier, Amsterdam (2018) https://doi.org/10.1016/B978-0-12-815244-7.00002-7

    Book  Google Scholar 

  5. Fathy, M.; Hassan, H.; Ahmed, M.S.: Experimental study on the effect of coupling parabolic trough collector with double slope solar still on its performance. Sol. Energy 163, 54–61 (2018)

    Article  Google Scholar 

  6. Sohani, A.; Hoseinzadeh, S.; Berenjkar, K.: Experimental analysis of innovative designs for solar still desalination technologies; An in-depth technical and economic assessment. J. Energy Storage (2020). https://doi.org/10.1016/j.est.2020.101862

    Article  Google Scholar 

  7. Kariman, H.; Hoseinzadeh, S.; Heyns, P.S.: Energetic and exergetic analysis of evaporation desalination system integrated with mechanical vapor recompression circulation. Case Stud. Thermal Eng. 16, 100548 (2019). https://doi.org/10.1016/j.csite.2019.100548

    Article  Google Scholar 

  8. Jamil, F.; Ali, H.M.: Sustainable desalination using portable devices: a concise review. Sol. Energy 194, 815–839 (2019). https://doi.org/10.1016/j.solener.2019.10.085

    Article  Google Scholar 

  9. Chen, Q.; Kum, J.M.; Li, Y.; Chua, K.J.: Experimental and mathematical study of the spray flash evaporation phenomena. Appl. Therm. Eng. 130, 598–610 (2018). https://doi.org/10.1016/j.applthermaleng.2017.11.018

    Article  Google Scholar 

  10. Araghi, A.H.; Khiadani, M.; Sada, M.H.; Hooman, K.: A numerical model and experimental veri fi cation for analysing a new vacuum spray fl ash desalinator utilising low grade energy. Desalination 413, 109–118 (2017). https://doi.org/10.1016/j.desal.2017.03.014

    Article  Google Scholar 

  11. Chen, Q.; Kum Ja, M.; Li, Y.; Chua, K.J.: Energy, economic and environment(3E) analysis and multi-objective optimization of a spray-assisted low-temperature desalination system. Energy (2018). https://doi.org/10.1016/j.energy.2018.03.051

    Article  Google Scholar 

  12. Chen, Q.; Kum Ja, M.; Li, Y.; Chua, K.J.: Energy, exergy and economic analysis of a hybrid spray-assisted low- temperature desalination/thermal vapor compression system. Energy 166, 855–871 (2019)

    Google Scholar 

  13. Eltawil, M.A.; Omara, Z.M.: Enhancing the solar still performance using solar photovoltaic, flat plate collector and hot air. Desalination 349, 1–9 (2014). https://doi.org/10.1016/j.desal.2014.06.021

    Article  Google Scholar 

  14. El-agouz, S.A.; El-aziz, G.B.; Awad, A.M.: Solar desalination system using spray evaporation. Energy 76, 276–283 (2014). https://doi.org/10.1016/j.energy.2014.08.0090360-5442

    Article  Google Scholar 

  15. Ikegami, Y.; Sasaki, H.; Gouda, T.; Uehara, H.: Experimental study on a spray flash desalination (influence of the direction of injection). Desalination 194, 81–89 (2006). https://doi.org/10.1016/j.desal.2005.10.026

    Article  Google Scholar 

  16. Chen, Q.; Kum Ja, M.; Li, Y.; Chua, K.J.: Evaluation of a solar-powered spray-assisted low-temperature desalination technology. Appl. Energy 211, 997–1008 (2018). https://doi.org/10.1016/j.apenergy.2017.11.103

    Article  Google Scholar 

  17. Miyatake, O.; Tomimura, T.; Ide, Y.; Fuj, T.: An experimental study of spray flash evaporation. Desalination 36, 113–128 (1981)

    Article  Google Scholar 

  18. Kabeel, A.E.; El-said, E.M.S.: Experimental study on a modified solar power driven hybrid desalination system. Desalination 443, 1–10 (2018). https://doi.org/10.1016/j.desal.2018.05.017

    Article  Google Scholar 

  19. Muthunayagam, A.E.; Ramamurthi, K.; Paden, J.R.: Low temperature flash vaporization for desalination. Desalination 180, 25–32 (2005). https://doi.org/10.1016/j.desal.2004.12.028

    Article  Google Scholar 

  20. Abdul-wahab, S.A.; Reddy, K.V.; Al-weshahi, M.A.; Al-hatmi, S.; Tajeldin, Y.M.: Development of a steady-state mathematical model for multistage flash (MSF) desalination plant. Int. J. Energy Res. 36, 710–723 (2012)

    Article  Google Scholar 

  21. Maroo, S.C.; Goswami, D.Y.: Theoretical analysis of a single-stage and two-stage solar driven fl ash desalination system based on passive vacuum generation. Dealination 249, 635–646 (2009). https://doi.org/10.1016/j.desal.2008.12.055

    Article  Google Scholar 

  22. Xuening, F.; Lei, C.; Yuman, D.; Min, J.; Jinping, F.: CFD modeling and analysis of brine spray evaporation system integrated with solar collector. Desalination (2015). https://doi.org/10.1016/j.desal.2015.02.027

    Article  Google Scholar 

  23. Ra, Y.; Reitz, R.D.: A vaporization model for discrete multi-component fuel sprays. Int. J. Multiph. Flow 35, 101–117 (2009). https://doi.org/10.1016/j.ijmultiphaseflow.2008.10.00

    Article  Google Scholar 

  24. Taylor, P.; Wellmann, J.; Neuhäuser, K.; Behrendt, F.; Lehmann, M.: Modeling an innovative low-temperature desalination system with integrated cogeneration in a concentrating solar power plant. Desalin. Water Treat. (2014). https://doi.org/10.1080/19443994.2014.940212

    Article  Google Scholar 

  25. Hoseinzadeh, S.; Sohani, A.: Using computational fluid dynamics for different alternatives water fl ow path in a thermal photovoltaic (PVT) system. Int. J. Numer. Methods Heat Fluid Flow 31, 1618–1637 (2020). https://doi.org/10.1108/HFF-02-2020-0085

    Article  Google Scholar 

  26. Prakash, O.; Laguri, V.; Pandey, A.; Kumar, A.; Kumar, A.: Review on various modelling techniques for the solar dryers. Renew. Sustain. Energy Rev. 62, 396–417 (2016). https://doi.org/10.1016/j.rser.2016.04.028

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Department of Science and Technology, Govt. of India, to support this study under "India-Iran Bilateral Scientific and Technological Cooperation" (DST/INT/Iran/P-11/2018).

Funding

Department of Science and Technology, Govt. of India for supporting this study under "India-Iran Bilateral Scientific and Technological Cooperation" (DST/INT/Iran/P-11/2018) (information that explains whether and by whom the research was supported).

Author information

Authors and Affiliations

Authors

Contributions

AK was involved in conceptualization, visualization, writing—review and editing, supervision, investigation. RK contributed to methodology, writing—original draft, S was involved in supervision.

Corresponding author

Correspondence to Anil Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Human and Animal Rights

Additional declarations for articles in life science journals that report the results of studies involving humans and/or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kant, R. & Samsher Review on Spray-Assisted Solar Desalination: Concept, Performance and Modeling. Arab J Sci Eng 46, 11521–11541 (2021). https://doi.org/10.1007/s13369-021-05846-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05846-7

Keywords

Navigation