Skip to main content
Log in

Effects of Ultraviolet Rays on L-Band In Vivo EPR Dosimetry Using Tooth Enamel

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

L-band electron paramagnetic resonance (EPR) in vivo dosimetry has the potential advantage of being able to accurately and sensitively measure the absorbed dose of ionizing radiation by measurements of teeth in situ. The equipment is transportable to the site where a radiation incident occurred and can be operated without specialized facilities. It, therefore, is very suitable for medical triage of victims in a large-scale radiation incident to quickly determine whether the dose was large enough to require urgent care. The measurements are made on the outer surfaces of the two upper incisor teeth. However, some in vitro studies of extracted teeth using higher frequency EPR have suggested that exposure to ultraviolet rays (UV) from sunlight might confound estimates of the dose of ionizing radiation made with EPR. Because the outer surfaces of incisors are likely to be exposed to UV/sunlight, it, therefore, is essential to determine the potential quantitative impact of UV on L-band EPR dosimetry measurements based on incisors. We, therefore, investigated the quantitative effect of UV on the EPR signal from ionizing irradiation of human teeth using the L-band spectrometer developed for field dosimetry. The UV-generated EPR signal was very small relative to the signals resulting from doses of ionizing radiation that are used for triage. For example, using our estimates of the effects of UV, for a lifetime of 50 years of exposure of these teeth (assuming an average exposure to sunlight of two hours/day), the expected average lifetime effect of UV-induced signal would be equivalent to 0.33 Gy; in contrast, triage criteria for accidental exposure to ionizing irradiation generally start at 2.0 Gy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Yes.

Notes

  1. The estimate of 2 h daily exposure of the upper incisors to UV on average over a lifetime is ‘conservative’ in that it is likely to be much higher than most people would have. Therefore, our estimates of years that correspond to achieving a given exposure level from sunlight in a ‘typical lifetime’ is likely to be too low; most people would receive much lower levels of exposure on their teeth and take many more years to achieve this level.

References

  1. J.M. Brady, N.O. Aarestad, H.M. Swartz, Health Phys. 15(1), 43–47 (1968)

    Article  Google Scholar 

  2. M. Miyake, Y. Nakai, I. Yamaguchi et al., Radiat. Prot. dosimetry 172(1–3), 248–253 (2016)

    Article  Google Scholar 

  3. P. Fattibene, F. Callens, Appl. Radiat. Isot. 68(11), 2033–2116 (2010)

    Article  Google Scholar 

  4. S. Egersdorfer, A. Wieser, A. Muller, Appl. Radiat. Isot. 47(11–12), 1299–1303 (1996)

    Article  Google Scholar 

  5. K. Shiraishi, M. Iwasaki, C. Miyazawa, H. Yonehara, M. Matsumoto, J. Radiat. Res. 43(3), 331–335 (2002)

    Article  ADS  Google Scholar 

  6. M. Zdravkova, J.M. Denis, B. Gallez, R. Debuyst, Radiat. Meas. 35(6), 603–608 (2002)

    Article  Google Scholar 

  7. M. Ikeya, H. Ishii, Int. J. Rad. Appl. Instrum. A 40(10–12), 1021–1027 (1989)

    Article  Google Scholar 

  8. E.I. Tolstykh, M.O. Degteva, V.P. Kozheurov et al., Radiat. Environ. Biophy. 39(3), 161–171 (2000)

    Article  Google Scholar 

  9. A. Wieser, R. Debuyst, P. Fattibene et al., Appl. Radiat. Isot. 62(2), 163–171 (2005)

    Article  Google Scholar 

  10. V.V. Chumak, J. Radiol. Prot. 32(1), N59-63 (2012)

    Article  Google Scholar 

  11. B. Pass, J.E. Aldrich, Med. Phys. 12(3), 305–307 (1985)

    Article  Google Scholar 

  12. T. Kubiak, Cur. Topics Biophy. 41(1), 11–21 (2018)

    Article  ADS  Google Scholar 

  13. A. Giussani, M.A. Lopez, H. Romm et al., Radiat. Environ. Biophy. 59(3), 357–387 (2020)

    Article  Google Scholar 

  14. H.M. Swartz, A. Iwasaki, T. Walczak et al., Appl. Radiat. Isot. 62(2), 293–299 (2005)

    Article  Google Scholar 

  15. B.B. Williams, A. Sucheta, R. Dong et al., Radiat. Meas. 42(6–7), 1094–1098 (2007)

    Article  Google Scholar 

  16. M. Miyake, K.J. Liu, T.M. Walczak, H.M. Swartz, Appl. Radiat. Isot. 52(5), 1031–1038 (2000)

    Article  Google Scholar 

  17. B.B. Williams, R. Dong, M. Kmiec et al., Health Phys. 98(2), 327–338 (2010)

    Article  Google Scholar 

  18. A.B. Flood, B.B. Williams, W. Schreiber et al., Radiat. Prot. Dos. 172(1–3), 72–80 (2016)

    Article  Google Scholar 

  19. B.B. Williams, A.B. Flood, I. Salikhov et al., Radiat. Environ. Biophys. 53(2), 335–346 (2014)

    Article  Google Scholar 

  20. L. Jiao, J. Takada, S. Endo et al., J. Radiat. Res. 48(1), 21–29 (2007)

    Article  ADS  Google Scholar 

  21. S. Sholom, M. Desrosiers, V. Chumak, N. Luckyanov, S.L. Simon, A. Bouville, Health Phys. 98(2), 360–368 (2010)

    Article  Google Scholar 

  22. N. Nakamura, H.M. Cullings, Y. Kodama et al., Radiat. Res. 165(3), 359–364 (2006)

    Article  ADS  Google Scholar 

  23. A. Bougai, A. Brik, V. Chumak, et al., IAEA, Vienna (2002)

  24. G. Liidja, J. Past, J. Puskar et al., Appl. Radiat. Isot. 47(8), 785–788 (1996)

    Article  Google Scholar 

  25. S.V. Sholom, E.H. Haskell, R.B. Hayes et al., Radiat. Meas. 29(1), 113–118 (1998)

    Article  Google Scholar 

  26. J. Nilsson, E. Lund, A. Lund, Appl. Radiat. Isot. 54(1), 131–139 (2001)

    Article  Google Scholar 

  27. S.V. Sholom, M. Desrosiers, V. Chumak et al., Health Phys. 98(2), 360 (2010)

    Article  Google Scholar 

  28. A.I. Ivannikov, A.M. Khailov, S.P. Orlenko et al., Radiat. Prot. Dosimetry 172(1–3), 265–274 (2016)

    Article  Google Scholar 

  29. S.V. Sholom, V.V. Chumak, L.F. Pasalskaja, Appl. Radiat. Isot. 52(5), 1283–1286 (2000)

    Article  Google Scholar 

  30. A. Modenese, L. Korpinen, F. Gobba, Int. J. Environ. Res. Public Health 15(10), 2063 (2018)

    Article  Google Scholar 

  31. B.B. Williams, R. Dong, R.J. Nicolalde et al., Int. J. Radiat. Biol. 87(8), 766–775 (2011)

    Article  Google Scholar 

  32. I. Salikhov, H. Hirata, T. Walczak, H.M. Swartz, J. Magn. Reson. 164(1), 54–59 (2003)

    Article  ADS  Google Scholar 

  33. A. Iwasaki, O. Grinberg, T. Walczak, H.M. Swartz, Appl. Radiat. Isot. 62(2), 187–190 (2005)

    Article  Google Scholar 

  34. I. Yamaguchi, H. Sato, H. Kawamura et al., Radiat. Prot. Dos. 172(1–3), 81–86 (2016)

    Article  Google Scholar 

  35. M. Umakoshi, I. Yamaguchi, H. Hirata et al., Health Phys. 113(4), 262–270 (2017)

    Article  Google Scholar 

  36. B.B. Williams, A.B. Flood, E. Demidenko, H.M. Swartz, Radiat. Prot. Dosimetry 172(1–3), 145–151 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Japan Society for the Promotion of Science KAKEN (grant number #18K09724), data provided and a great deal of technical support by Asahi Spectroscopy Co., Ltd.. We would like to express our deep gratitude to the volunteers who provided the teeth and Asahi Spectroscopy Co., Ltd. for this research.

Funding

This research was supported by Japan Society for the Promotion of Science KAKEN (Grant #18K09724).

Author information

Authors and Affiliations

Authors

Contributions

YN: Wrote the first draft of the paper and carried out most of the experiments. HH: Contributed to the planning and analyses of the data and improved some parts of the equipment and maintained the instrument. HMS: Contributed to the design of the research and the interpretation of the data. ABF: Contributed to the interpretation of the results of the experiments and to the discussion of the relation between the findings in this paper and prior work; corrected the language of the paper to make it more readily understood; checked English grammar. BBW: Contributed to the theoretical analysis of the measurements and the validation of the technical descriptions. WS: Provided technical support of the EPR spectrometer and the methods for interpreting spectra. MM:Provided overall supervision of the research and finalization of the paper.

Corresponding author

Correspondence to Minoru Miyake.

Ethics declarations

Conflict of interest

HMS and ABF are co-owners of Clin-EPR, LLC, which manufactures L-band EPR dosimeters for investigational use. Other authors declare that they have no conflict of interest.

Ethical approval

Approved by (#H24-004) IRB of Kagawa University.

Consent to participate

Written consent was obtained.

Consent for publication

The publication is authorized by IRB of Kagawa University dosimeters.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakai, Y., Yamaguchi, I., Hirata, H. et al. Effects of Ultraviolet Rays on L-Band In Vivo EPR Dosimetry Using Tooth Enamel. Appl Magn Reson 53, 305–318 (2022). https://doi.org/10.1007/s00723-021-01340-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01340-3

Navigation