Skip to main content
Log in

Achieving arbitrary throughput-fairness trade-offs in the inter cell interference coordination with fixed transmit power problem

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

We study the problem of inter cell interference coordination (ICIC) with fixed transmit power in OFDMA-based cellular networks, in which each base station (BS) needs to decide as to which subchannel, if any, to allocate to each of its associated mobile stations (MS) for data transmission. In general, there exists a trade-off between the total throughput (sum of throughputs of all the MSs) and fairness under the allocations found by resource allocation schemes. We introduce the concept of \(\tau -\alpha -\)fairness by modifying the concept of \(\alpha -\)fairness, which was earlier proposed in the context of congestion control for packet-switched networks. The concept of \(\tau -\alpha -\)fairness allows us to achieve arbitrary trade-offs between total throughput and fairness by selecting an appropriate value of \(\alpha\) in \([0,\infty )\). We show that for every \(\alpha \in [0,\infty )\) and every \(\tau > 0\), the problem of finding a \(\tau -\alpha -\)fair allocation is NP-Complete. Further, we show that for every \(\alpha \in [0, \infty )\), there exist thresholds such that if the potential interference levels experienced by each MS on every subchannel are above the threshold values, then the problem can be optimally solved in polynomial time by reducing it to the bipartite graph matching problem. Also, we propose a simple, distributed subchannel allocation algorithm for the ICIC problem, which is flexible, requires a small amount of time to operate, and requires information exchange among only neighboring BSs. We investigate via simulations as to how the algorithm parameters should be selected so as to achieve any desired trade-off between the total throughput and fairness. Finally, we compare the performance of the proposed algorithm with those of the simulated annealing based and opportunistic subchannel allocation algorithms in terms of the total throughput, fairness index and computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The case of uplink transmissions can be handled similar to the downlink case.

  2. For simplicity, we discard the superscript n (subchannel number) in the remaining proof.

  3. Note that Problem 1 remains NP-Complete in the case where there are multiple subchannels, i.e., \(N \ge 2\). This can be proved similar to the proof of Theorem 1, with the change that we now reduce the MIS problem to an instance of Problem 1 in which there are N subchannels, N MSs associated with each BS and the channel gains are given by:

    $$\begin{aligned} H_{u,j}^{n}= & {} 2, \; \forall u \in V,\; j \in \mathscr {M}_u,\; n \in \mathscr {N},\\ H_{u,j}^{n}= & {} \left\{ \begin{array}{ll} \infty , &{} \text{ if } \; (u,v)\in E,\; \\ 0, &{} \text{ if } \; (u,v)\notin E, \; \\ \end{array} \right. \forall u \ne v,\; j \in \mathscr {M}_v,\; n \in \mathscr {N}. \end{aligned}$$
  4. We say “potential” interference because an MS \(j \in \mathscr {M}_a\) experiences interference only when subchannel n is assigned to it and to an MS of BS \(b \ne a\).

  5. For simplicity, we have replaced \(\eta (a,j,n)\) and \(\beta (a,j,n)\) by \(\eta\) and \(\beta\), respectively.

  6. Similar deallocations of MSs from subchannels other than n are performed.

  7. Similar deallocations of MSs from subchannels other than n are performed.

  8. For normalization, the bandwidth of each subchannel is taken to be unity and hence, the throughput in all the plots is in multiples of B bps, where B is the bandwidth of each subchannel in Hz.

  9. For all the plots in Figs. 4, 5, 6, 7, 8, 9, and  10, each data point was obtained by averaging across 50 runs with different random seeds using Matlab.

  10. Note that for all the plots in Figs. 4, and 5, only small values of the parameters K, N and M were used since it is computationally prohibitive to execute the exhaustive search algorithm with large values of K, N and M.

References

  1. Gupta, V. K., & Kasbekar, G. S. (2019). Achieving arbitrary throughput-fairness trade-offs in the inter-cell interference coordination with fixed transmit power problem. Network, control, and optimization (pp. 17–35). Cham: Springer.

    Chapter  Google Scholar 

  2. Ghosh, A., Zhang, J., Andrews, J. G., & Muhamed, R. (2010). Fundamentals of LTE (1st ed.). Upper Saddle River, NJ, USA: Prentice Hall Press.

    Google Scholar 

  3. Kosta, C., Hunt, B., Quddus, A. U., & Tafazolli, R. (2013). On interference avoidance through inter-cell interference coordination (icic) based on ofdma mobile systems. IEEE Communications Surveys & Tutorials, 15(3), 973–995 (Third).

    Article  Google Scholar 

  4. Lopez-Perez, D., Guvenc, I., de la Roche, G., Kountouris, M., Quek, T. Q. S., & Zhang, J. (2011). Enhanced intercell interference coordination challenges in heterogeneous networks. IEEE Wireless Communications, 18(3), 22–30.

    Article  Google Scholar 

  5. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., & Zhang, J. C. (2014). What will 5g be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Article  Google Scholar 

  6. Ghauch, H., Kim, T., Bengtsson, M., & Skoglund, M. (2017). Sum-rate maximization in sub-28-ghz millimeter-wave mimo interfering networks. IEEE Journal on Selected Areas in Communications, 35(7), 1649–1662.

    Article  Google Scholar 

  7. Kim, J., & Cho, D. (2010). A joint power and subchannel allocation scheme maximizing system capacity in indoor dense mobile communication systems. IEEE Transactions on Vehicular Technology, 59(9), 4340–4353.

    Article  Google Scholar 

  8. Wei, Yu., & Cioffi, J. M. (2006). Constant-power waterfilling: Performance bound and low-complexity implementation. IEEE Transactions on Communications, 54(1), 23–28.

    Article  Google Scholar 

  9. Gupta, V. K., Nambiar, A., & Kasbekar, G. S. (2018). Complexity analysis, potential game characterization and algorithms for the inter-cell interference coordination with fixed transmit power problem. IEEE Transactions on Vehicular Technology, 67(4), 3054–3068.

    Article  Google Scholar 

  10. Zhang, Y., & Leung, C. (2008). Performance of equal power allocation in multiuser ofdm-based cognitive radio systems. Journal of Electrical and Computer Engineering. https://doi.org/10.1155/2008/420478.

    Article  Google Scholar 

  11. Bin Sediq, A., Schoenen, R., Yanikomeroglu, H., & Senarath, G. (2015). Optimized distributed inter-cell interference coordination (icic) scheme using projected subgradient and network flow optimization. IEEE Transactions on Communications, 63(1), 107–124.

    Article  Google Scholar 

  12. Kosta, C., Hunt, B., Quddus, A. U., & Tafazolli, R. (2012). A low-complexity distributed inter-cell interference coordination (icic) scheme for emerging multi-cell hetnets. In 2012 IEEE vehicular technology conference (VTC Fall), Sept 2012, pp. 1–5.

  13. Rahman, M., & Yanikomeroglu, H. (2010). Enhancing cell-edge performance: A downlink dynamic interference avoidance scheme with inter-cell coordination. IEEE Transactions on Wireless Communications, 9(4), 1414–1425.

    Article  Google Scholar 

  14. Yassin, M. (2015). Inter-cell interference coordination in wireless networks. Ph.D. dissertation.

  15. Yagcioglu, M., & Bayat, O. (2019). Next generation dynamic inter-cellular scheduler. International Journal of Electronics and Telecommunications, 65(3), 441–448.

    Google Scholar 

  16. Cheng, H. T., & Zhuang, W. (2008). An optimization framework for balancing throughput and fairness in wireless networks with qos support. IEEE Transactions on Wireless Communications, 7(2), 584–593.

    Article  Google Scholar 

  17. Sediq, A. B., Gohary, R. H., & Yanikomeroglu, H. (2012). Optimal tradeoff between efficiency and jain’s fairness index in resource allocation. In 2012 IEEE 23rd International symposium on personal, indoor and mobile radio communications - (PIMRC), Sept 2012, pp. 577–583.

  18. Jain, R., Chiu, D. M., & Hawe, W. (1998). A quantitative measure of fairness and discrimination for resource allocation in shared computer systems. CoRR, vol. cs.NI/9809099, 1998. Available: http://dblp.uni-trier.de/db/journals/corr/corr9809.html#cs-NI-9809099.

  19. Sheikh, S., Wolhuter, R., & Engelbrecht, H. A. (2015). An adaptive congestion control and fairness scheduling strategy for wireless mesh networks. In 2015 IEEE symposium series on computational intelligence, Dec 2015, pp. 1174–1181.

  20. Mo, J., & Walrand, J. (2000). Fair end-to-end window-based congestion control. IEEE/ACM Transactions on Networking, 8(5), 556–567.

    Article  Google Scholar 

  21. Kelly, F., Maulloo, A., & Tan, D. (1998). Rate control for communication networks: Shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 49, 02.

    Article  Google Scholar 

  22. Bertsekas, D., & Gallager, R. (1992). Data networks (2Nd ed.). Upper Saddle River, NJ, USA: Prentice-Hall Inc.

    MATH  Google Scholar 

  23. Lan, T., Kao, D., Chiang, M., & Sabharwal, A. (2010) An axiomatic theory of fairness in network resource allocation. In 2010 Proceedings IEEE INFOCOM, Mar 2010, pp. 1–9.

  24. Kleinberg, J., & Tardos, E. (2005). Algorithm design. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

    Google Scholar 

  25. Yoon, J., & Hwang, G. (2018). Distance-based inter-cell interference coordination in small cell networks: Stochastic geometry modeling and analysis. IEEE Transactions on Wireless Communications, 17(6), 4089–4103.

    Article  Google Scholar 

  26. Liu, C., Huang, P., Xiao, L., & Esfahanian, A. (2020). Inter-femtocell interference identification and resource management. IEEE Transactions on Mobile Computing, 19(1), 116–129.

    Article  Google Scholar 

  27. Liu, C., & Xiao, L. (2019). Interference precancellation for resource management in heterogeneous cellular networks. IEEE Transactions on Cognitive Communications and Networking, 5(1), 138–152.

    Article  MathSciNet  Google Scholar 

  28. Kim, S., Jwa, H., Moon, J., & Na, J. (2018). Achieving fair cell-edge performance: Low-complexity interference coordination in ofdma networks. In 2018 20th international conference on advanced communication technology (ICACT), Feb 2018, pp. 6–11.

  29. Jiang, L., & Song, R. (2018). A low-complexity resource allocation scheme for ofdma multicast systems with proportional fairness. China Communications, 15(1), 1–11.

    Article  MathSciNet  Google Scholar 

  30. Ge, X., Jin, H., & Leung, V. C. M. (2018). Joint opportunistic user scheduling and power allocation: throughput optimisation and fair resource sharing. IET Communications, 12(5), 634–640.

    Article  Google Scholar 

  31. Shen, Y., Huang, X., Yang, B., Gong, S., & Wang, S. (2017). Fair resource allocation algorithm for chunk based ofdma multi-user networks. In 2017 IEEE 86th vehicular technology conference (VTC-Fall), Sept 2017, pp. 1–5.

  32. Zhang, J., Ma, M., Ma, J., Zou, M., & Jiao, B. (2020). Residual self-interference suppression guided resource allocation for full-duplex orthogonal frequency division multiple access system. IET Communications, 14(1), 47–53.

    Article  Google Scholar 

  33. Guo, S., Zhou, X., Xiao, S., & Sun, M. (2019). Fairness-aware energy-efficient resource allocation in d2d communication networks. IEEE Systems Journal, 13(2), 1273–1284.

    Article  Google Scholar 

  34. Miki, N., Kanehira, Y., & Tokoshima, H. (2017). Investigation on joint optimization for user association and inter-cell interference coordination based on proportional fair criteria. In 2017 11th international conference on signal processing and communication systems (ICSPCS), Dec 2017, pp. 1–6.

  35. Pastore, A., & Navarro, M. (2019). A fairness-throughput tradeoff perspective on noma multiresolution broadcasting. IEEE Transactions on Broadcasting, 65(1), 179–186.

    Article  Google Scholar 

  36. Miki, N., & Kanehira, Y. (2019) Investigation on distributed optimization of user association and inter-cell interference coordination based on proportional fair criteria. In 2019 16th ieee annual consumer communications & networking conference (CCNC), Jan 2019, pp. 1–5.

  37. Huang, X., Zhang, D., Tang, S., Chen, Q., & Zhang, J. (2019). Fairness-based distributed resource allocation in two-tier heterogeneous networks. IEEE Access, 7, 40000–40012.

    Article  Google Scholar 

  38. Kaveh, F., Soleimanpour, M., & Talebi, S. (2020). Joint optimal resource allocation schemes for downlink cooperative cellular networks over orthogonal frequency division multiplexing carriers. IET Communications, 14(10), 1560–1570.

    Article  Google Scholar 

  39. Shahsavari, S., Akar, N., & Khalaj, B. H. (2018). Joint cell muting and user scheduling in multi-cell networks with temporal fairness. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2018/4846291.

    Article  Google Scholar 

  40. Jin, Y., & Hayashi, M. (2018) Trade-off between fairness and efficiency in dominant alpha-fairness family. In IEEE INFOCOM 2018 - IEEE conference on computer communications workshops (INFOCOM WKSHPS), Apr 2018, pp. 391–396.

  41. Rappaport, T. (2001). Wireless communications: Principles and practice (2nd ed.). Upper Saddle River, NJ, USA: Prentice Hall PTR.

    MATH  Google Scholar 

  42. Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. New York, NY, USA: Cambridge University Press.

    Book  Google Scholar 

  43. Papadimitriou, C. H., & Steiglitz, K. (1982). Combinatorial optimization: Algorithms and complexity. Upper Saddle River, NJ, USA: Prentice-Hall Inc.

    MATH  Google Scholar 

  44. Yu, S. M., & Kim, S. (2013). Downlink capacity and base station density in cellular networks. In 11th International Symposium and Workshops on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt),, pp. 119–124.

  45. Kelif, J. M., Coupechoux, M., & Godlewski, P. (2012). On the dimensioning of cellular ofdma networks. Physical Communication, 5(1), 10–21. Available: http://www.sciencedirect.com/science/article/pii/S1874490711000553.

  46. Lee, Y. L., Loo, J., Chuah, T. C., & El-Saleh, A. A. (2016). Fair resource allocation with interference mitigation and resource reuse for lte/lte-a femtocell networks. IEEE Transactions on Vehicular Technology, 65(10), 8203–8217.

    Article  Google Scholar 

  47. Fraimis, I. G., Papoutsis, V. D., & Kotsopoulos, S. A. (2010). A decentralized subchannel allocation scheme with inter-cell interference coordination (icic) for multi-cell ofdma systems. In 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, pp. 1–5.

  48. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York, NY, USA: Cambridge University Press.

    Book  Google Scholar 

  49. Mitrinović, D. S., & Pečarić, J. E. (1993). Bernoulli’s inequality. Rendiconti del Circolo Matematico di Palermo, 42(3), 317–337.

    Article  MathSciNet  Google Scholar 

  50. Love, E. (1980). 64.4 some logarithm inequalities. The Mathematical Gazette, 64(427), 55–57.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaibhav Kumar Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this paper appeared in the proceedings of the NETGCOOP 2018 conference [1]

Appendices

Appendix

Proof of Lemma 1

First, we will show that the function f(x) is quasi-convex on the domain \(x \ge 1\).

property 1

A function Q(.) is quasi-convex if \(Q''(z)>0\) whenever \(Q'(z)=0\) [48].

Let

$$\begin{aligned} y=(x-1)\beta + \frac{1}{\eta }. \end{aligned}$$
(47)

Then,

$$\begin{aligned} f(x)=g(y), \end{aligned}$$
(48)

where \(g(y)=\)

$$\begin{aligned} \left( \frac{y}{\beta }+1-\frac{1}{\eta \beta }\right) \frac{\left( \tau +\log \left( 1 + \frac{1}{y} \right) \right) ^{1-\alpha }}{1-\alpha }-(\frac{y}{\beta }-\frac{1}{\eta \beta })\frac{\tau ^{1-\alpha }}{1-\alpha }. \end{aligned}$$

Let \(p= \left( \tau +\log \left( 1 + \frac{1}{y} \right) \right)\). Then,

$$\begin{aligned} g'(y)= & {} \frac{1}{\beta }\left( \frac{p^{1-\alpha }}{1-\alpha }-\frac{(y+\beta -\frac{1}{\eta })\left( p \right) ^{-\alpha }}{y(y+1)}-\frac{\tau ^{1-\alpha }}{1-\alpha } \right) . \end{aligned}$$
(49)
$$\begin{aligned} g'(y)= & {} 0 \Leftrightarrow y+\beta -\frac{1}{\eta }= \frac{y(y+1)(p-p^{\alpha }\tau ^{1-\alpha })}{1-\alpha }. \end{aligned}$$
(50)

Further, \(g''(y)\)

$$\begin{aligned} =\frac{1}{\beta y(y+1)p^{\alpha }}\left( -2+ \frac{y+\beta -\frac{1}{\eta }}{y(y+1)p^{\alpha }}\left( (2y+1)p^{\alpha }-\alpha p^{\alpha -1} \right) \right) \end{aligned}$$

So \(g''(y) > 0\)

\(\Leftrightarrow py(2(\beta -\frac{1}{\eta })-1)-\alpha (y+\beta -\frac{1}{\eta })+p(\beta -\frac{1}{\eta })) > 0\)

Substituting from (50) in the above inequality, we get:

\(py(2(\beta -\frac{1}{\eta })-1)-\alpha y(y+1)\frac{p-p^{\alpha }\tau ^{1-\alpha }}{1-\alpha }+p(\beta -\frac{1}{\eta })) > 0\)

$$\begin{aligned} \Leftrightarrow y(2(\beta -\frac{1}{\eta })-1)-\alpha y(y+1)\frac{1-\left( 1+\frac{\log (1+\frac{1}{y})}{\tau }\right) ^{\alpha -1}}{1-\alpha }+(\beta -\frac{1}{\eta }) > 0 \end{aligned}$$
(51)

Now, we find sufficient conditions for (51) to hold for three different values of \(\alpha\):

  1. (a)

    \(\alpha <1:\)

    Because \((1+x)^r \ge 1+ rx \;\; \forall x \ge -1, \;r \in \; \mathscr {R} \backslash (0,1)\) [49], a sufficient condition for (51) to hold is

    \(y(2(\beta -\frac{1}{\eta })-1)-\alpha \frac{y(y+1)}{1-\alpha }[1-\{1+(\alpha -1)\frac{\log (1+\frac{1}{y})}{\tau }\}]+(\beta -\frac{1}{\eta })) > 0\).

    Because \(\log (1+x) \le x \; \forall x \ge -1\) [50], a sufficient condition for the above inequality to hold is

    \(y\tau (2(\beta -\frac{1}{\eta })-1)-\alpha (y+1)+\tau (\beta -\frac{1}{\eta })) > 0.\)

    \(\Leftrightarrow y(2\tau (\beta -\frac{1}{\eta })-\tau -\alpha )-\alpha +\tau (\beta -\frac{1}{\eta })) > 0\).

A sufficient condition for the above inequality to hold is

$$\begin{aligned} \beta \ge \frac{\alpha }{\tau }+\frac{1}{\eta }\;\; \text{ and } \; \;\tau < \alpha . \end{aligned}$$
(52)

Hence, when (52) holds and \(\alpha < 1\), then \(g''(y)> 0\) when \(g'(y) = 0\).

  1. (b)

    \(1< \alpha < 2:\) From (51),

    \(y(2(\beta -\frac{1}{\eta })-1)+\alpha y(y+1)\frac{1-\left( 1+\frac{\log (1+\frac{1}{y})}{\tau }\right) ^{\alpha -1}}{\alpha -1}+(\beta -\frac{1}{\eta }) > 0.\)

    Because \((1+x)^r \le 1+ rx \;\; \forall x \ge -1, \;r \in \; (0,1)\) [49], a sufficient condition for the above inequality to hold is

    \(y(2(\beta -\frac{1}{\eta })-1)+\alpha \frac{y(y+1)}{\alpha -1}[1-\{1+(\alpha -1)\frac{\log (1+\frac{1}{y})}{\tau }\}]+(\beta -\frac{1}{\eta })) > 0.\)

    Because \(\log (1+x) \le x \; \forall x \ge -1\) [50], a sufficient condition for the above inequality to hold is

    \(y\tau (2(\beta -\frac{1}{\eta })-1)-\alpha (y+1)+\tau (\beta -\frac{1}{\eta })) > 0\)

    \(\Leftrightarrow y(2\tau (\beta -\frac{1}{\eta })-\tau -\alpha )-\alpha +\tau (\beta -\frac{1}{\eta })) > 0.\)

A sufficient condition for the above inequality to hold is

$$\begin{aligned} \beta \ge \frac{\alpha }{\tau }+\frac{1}{\eta }\;\; \text{ and } \; \; \tau < \alpha , \end{aligned}$$

which is the same as (52). Hence, when (52) holds and \(1< \alpha < 2\), then \(g''(y)> 0\) when \(g'(y) = 0\).

(c) \(\alpha \ge 2:\) From (51),

$$\begin{aligned}&y\left( 2\left( \beta -\frac{1}{\eta }\right) -1\right) +\alpha y(y+1)\frac{1-\left( 1+\frac{\log \left( 1+\frac{1}{y}\right) }{\tau }\right) ^{\alpha -1}}{\alpha -1}\nonumber \\&\quad +(\beta -\frac{1}{\eta }) > 0, \end{aligned}$$
(53)

because \((1+x)^r \le 1+ \left( 2^r-1\right) x \;\; \forall x \in [0,1], \;r \in \; \mathscr {R} \backslash (0,1)\) [49].

Now,

$$\begin{aligned} 0 \le \log (1+\eta ) \le \tau \Rightarrow \log (1+\frac{1}{y}) \le \tau \;(\text{ since }\; y \ge \frac{1}{\eta }). \end{aligned}$$
(54)

Next, if (54) holds, a sufficient condition for (53) to hold is

\(y\left( 2\left( \beta -\frac{1}{\eta }\right) -1\right) +\alpha y(y+1)\frac{1-\left( 1+\left( 2^{\left( \alpha -1\right) }-1\right) \frac{\log \left( 1+\frac{1}{y}\right) }{\tau }\right) }{\alpha -1}+\left( \beta -\frac{1}{\eta }\right) > 0\)

Using the fact that \(\log (1+x)\le x \;\;\forall x \ge -1\) [50], a sufficient condition for the above inequality to hold is

\(y\tau \left( 2(\beta -\frac{1}{\eta })-1\right) - \frac{\alpha (y+1)\left( 2^{(\alpha -1)}-1\right) }{\alpha -1}+\tau (\beta -\frac{1}{\eta })> 0\)

\(\Leftrightarrow y\left( 2\tau \left( \beta -\frac{1}{\eta }\right) -\tau -\frac{\alpha (2^{(\alpha -1)}-1)}{\alpha -1}\right) - \frac{\alpha (2^{(\alpha -1)}-1)}{\alpha -1}+\tau \left( \beta -\frac{1}{\eta }\right) > 0\).

The above inequality holds if the following two inequalities hold:

$$\begin{aligned} \beta -\frac{1}{\eta }>\frac{\alpha \left( 2^{(\alpha -1)}-1\right) }{\tau (\alpha -1)} \end{aligned}$$
(55)

and \(2\tau \left( \beta -\frac{1}{\eta }\right) -\tau -\frac{\alpha \left( 2^{(\alpha -1)}-1\right) }{\alpha -1}>0\).

Using (55), a sufficient condition for the above inequality to hold is

$$\begin{aligned}&2\tau \frac{\alpha \left( 2^{\left( \alpha -1\right) }-1\right) }{\tau \left( \alpha -1\right) }-\tau -\frac{\alpha \left( 2^{\left( \alpha -1\right) }-1\right) }{\alpha -1}>0.\nonumber \\&\quad \Leftrightarrow \frac{\alpha \left( 2^{\left( \alpha -1\right) }-1\right) }{\tau (\alpha -1)}>1. \end{aligned}$$
(56)

Hence, when (54), (55) and (56) hold and \(\alpha \ge 2\), then \(g''(y)> 0\) when \(g'(y) = 0\). Therefore, it follows from Property 1 that g(.) is quasi-convex when (52) holds (respectively, (54), (55) and (56) hold) and \(\alpha \in [0,2)\backslash \{1\}\) (respectively, \(\alpha \ge 2\)).

Now, it follows from (47) and (48) that \(f'(x)=\beta g'(y)\) and \(f''(x)=\beta ^2 g''(y).\) Therefore, f(.) also satisfies the condition in Property 1 whenever g(.) satisfies it. Hence, f(.) is quasi-convex when (52) holds (respectively, (54), (55) and (56) hold) and \(\alpha \in [0,2)\backslash \{1\}\) (respectively, \(\alpha \ge 2\)).

Also, \(\lim _{x \rightarrow \infty } f(x)\)

$$\begin{aligned}&= \lim _{x \rightarrow \infty } \frac{\tau ^{1-\alpha }}{1-\alpha }\left[ x\left( 1+\frac{\log \left( 1 + \frac{\eta }{(x-1)\eta \beta + 1} \right) }{\tau }\right) ^{1-\alpha }-(x-1) \right] \nonumber \\&= \lim _{x \rightarrow \infty } \frac{\tau ^{1-\alpha }}{1-\alpha }\left[ \frac{\left( \left( 1+\frac{\log \left( 1 + \frac{\eta }{(x-1)\eta \beta + 1} \right) }{\tau }\right) ^{1-\alpha }-1\right) }{\frac{1}{x}}+1 \right] \end{aligned}$$
(57)

Using L’Hopital’s rule,

$$\begin{aligned} \lim _{x \rightarrow \infty } f(x) = \frac{\tau ^{-\alpha }\left( 1+\beta \tau -\alpha \right) }{\beta (1-\alpha )}. \end{aligned}$$
(58)

Now, let

$$\begin{aligned} \beta > \frac{1-\alpha }{\frac{\left( \tau +\log \left( 1 + \eta \right) \right) ^{1-\alpha }}{\tau ^{-\alpha }}-\tau }. \end{aligned}$$
(59)

From (58) and (59), it is easy to show that for \(\alpha \in [0, \infty ) \backslash \{1\}\):

$$\begin{aligned} \lim _{x \rightarrow \infty } f(x) < f(1) . \end{aligned}$$
(60)

Now, consider the sublevel set:

$$S = \{x > 1 | f(x) < f(1) \}.$$

By (60), there exists \(x_0 > 1\) such that \(x \in S\) for all \(x > x_0\). Also, clearly \(1 \in S\). Since \(f(\cdot )\) is quasi-convex, the set S is convex [48]; so \(x \in S\) for all \(x > 1\). That is, when (54), (55), (56) and (59) hold (respectively, (52) and (59) hold) for \(\alpha \ge 2\) (respectively, \(\alpha \in [0,2) \backslash \{1\}\)), then \(f(x) < f(1)\) for all \(x > 1\) and the result follows.

Proof of Lemma 2

First, we will show that the function \(f_1(x)\) is quasi-convex on the domain \(x \ge 1\). Let

$$\begin{aligned} y=(x-1)\beta + \frac{1}{\eta }. \end{aligned}$$
(61)

Then,

$$\begin{aligned} f_1(x)=g_1(y). \end{aligned}$$
(62)

where \(g_1(y)=\)

$$\begin{aligned} \left( \frac{y}{\beta }+1-\frac{1}{\eta \beta }\right) \log \left( \tau +\log \left( 1 + \frac{1}{y} \right) \right) -(\frac{y}{\beta }-\frac{1}{\eta \beta })\log \tau . \end{aligned}$$

Now, \(g_1'(y)= \frac{1}{\beta }\left[ \log p-\frac{y+\beta -\frac{1}{\eta }}{y(y+1)p}-\log \tau \right] ,\)

where, \(p= \left( \tau +\log \left( 1 + \frac{1}{y} \right) \right) .\)

$$\begin{aligned} g_1'(y)=0 \Leftrightarrow y+\beta -\frac{1}{\eta }= y(y+1)p \log \frac{p}{\tau }. \end{aligned}$$
(63)

Now, \(g_1''(y)\)

\(=\frac{1}{\beta }\left[ -\frac{1}{y(y+1)p}-\left( \frac{y(y+1)p-\left( y+\beta -\frac{1}{\eta }\right) \left( (2y+1)p-1\right) }{\left( y(y+1)p\right) ^{2}}\right) \right]\)

$$\begin{aligned} =\frac{1}{\beta \left( y(y+1)p\right) ^{2}}\left( -yp-y+2yp\left( \beta -\frac{1}{\eta }\right) +(p-1)\left( \beta -\frac{1}{\eta }\right) \right) . \end{aligned}$$

So \(g_1''(y) > 0\)

\(\Leftrightarrow py\left( 2\left( \beta -\frac{1}{\eta }\right) -1\right) -\left( y+\beta -\frac{1}{\eta }\right) +p\left( \beta -\frac{1}{\eta }\right) ) > 0.\)

Substituting from (63) in the above inequality, we get:

\(py\left( 2\left( \beta -\frac{1}{\eta }\right) -1\right) -y(y+1)p \log \left( 1+\frac{\log \left( 1+\frac{1}{y}\right) }{\tau }\right) +\left( p\left( \beta -\frac{1}{\eta }\right) \right) > 0\)

As \(\log (1+x) \le x \;\;\forall x \ge -1\) [50], a sufficient condition for the above inequality to hold is

\(y\left( 2\left( \beta -\frac{1}{\eta }\right) -1\right) -y(y+1)\frac{1}{y\tau }+\left( \left( \beta -\frac{1}{\eta }\right) \right) > 0.\)

\(\Leftrightarrow y\left( 2\tau \left( \beta -\frac{1}{\eta }\right) -1-\tau \right) -1+\left( \tau \left( \beta -\frac{1}{\eta }\right) \right) > 0.\)

A sufficient condition for the above inequality to hold is

$$\begin{aligned} \beta \ge \frac{1}{\tau }+\frac{1}{\eta }\;\; \text{ and } \; \; \tau < 1. \end{aligned}$$
(64)

Hence, under the condition in (64), \(g_1''(y)> 0\) when \(g_1'(y) = 0\) for \(\alpha =1.\) Therefore, it follows from Property 1 that \(g_1(.)\) is quasi-convex.

Now, it follows from (61) and (62) that \(f_1'(x)=\beta g_1'(y)\) and \(f_1''(x)=\beta ^2 g_1''(y).\) Therefore, \(f_1(.)\) also satisfies the condition in Property 1 whenever \(g_1(.)\) satisfies it. Hence, \(f_1(.)\) is quasi-convex when (64) holds.

Also, \(\lim _{x \rightarrow \infty } f_1(x)\)

$$\begin{aligned}&= \lim _{x \rightarrow \infty } x\log \left[ \tau \left( 1+ \frac{\log \left( 1+\frac{\eta }{(x-1)\eta \beta +1}\right) }{\tau } \right) \right] -x\log \tau +\log \tau \nonumber \\&= \lim _{x \rightarrow \infty } x\log \left( 1+ \frac{\log \left( 1+\frac{\eta }{(x-1)\eta \beta +1}\right) }{\tau } \right) +\log \tau \nonumber \\&= \lim _{x \rightarrow \infty } \frac{\log \left( 1+ \frac{\log \left( 1+\frac{\eta }{(x-1)\eta \beta +1}\right) }{\tau } \right) }{\frac{1}{x}} +\log \tau . \end{aligned}$$
(65)

Using L’Hopital’s rule,

$$\begin{aligned} \lim _{x \rightarrow \infty } f_1(x) = \frac{1}{\beta \tau }+\log \tau . \end{aligned}$$
(66)

Now, let

$$\begin{aligned} \beta > \frac{1}{\tau \log \left( 1+ \frac{\log \left( 1+\eta \right) }{\tau }\right) }. \end{aligned}$$
(67)

From (66) and (67), it is easy to show that

$$\begin{aligned} \lim _{x \rightarrow \infty } f_1(x) < f_1(1). \end{aligned}$$
(68)

Now, consider the sublevel set:

$$S = \{x > 1 | f_1(x) < f_1(1) \}.$$

By (68), there exists \(x_0 > 1\) such that \(x \in S\) for all \(x > x_0\). Also, clearly \(1 \in S\). Since \(f_1(\cdot )\) is quasi-convex, the set S is convex [48]; so \(x \in S\) for all \(x > 1\). That is, when (64) and (67) hold, then \(f_1(x) < f_1(1)\) for all \(x > 1\) and the result follows.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, V.K., Kasbekar, G.S. Achieving arbitrary throughput-fairness trade-offs in the inter cell interference coordination with fixed transmit power problem. Wireless Netw 27, 3709–3731 (2021). https://doi.org/10.1007/s11276-021-02692-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02692-1

Keywords

Navigation