Skip to main content

Advertisement

Log in

Shift in the spatial and temporal distribution of Aedes taeniorhynchus following environmental and local developments in St. Johns County, Florida

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

The Anastasia Mosquito Control District (AMCD) of St. Johns County (SJC), St. Augustine, Florida, USA, was formed in 1948 to cover the 27 km2 of Anastasia Island and control the black salt marsh mosquito, Aedes taeniorhynchus (Wiedemann). Today AMCD covers the entirety of SJC (1588 km2) and Ae. taeniorhynchus is still the most abundant mosquito species in the county. Here we present the findings from 16 years’ worth of surveillance records of AMCD mosquito populations in conjunction with annual land-use land-cover (LULC) change and climate data to better understand how environmental factors have impacted SJC Ae. taeniorhynchus populations in recent history. The statistical regression and geospatial analyses demonstrated the presence of spatial and temporal clusters of Ae. taeniorhynchus populations in terms of abundance and distribution. Additionally, Ae. taeniorhynchus abundance and distribution were significantly influenced by the annual changes of LULC and climate variables. The linear regression analysis using standard least square and corrected Akaike Information Criterion revealed a migration of mangrove swamps and saltwater marshes that corresponded to a southern shift in the spatial–temporal distribution of Ae. taeniorhynchus communities. This was confirmed by the significant change in LULC characteristics between three representative years (2004, 2009, 2014) and the redistribution of Ae. taeniorhynchus abundances represented by Moran’s I index values. The annual values of four climate variables (average and minimum temperature, mean dew point, and maximum vapor pressure deficit) and three LULC types (mangrove swamps, saltwater pools within saltmarshes, and upland nonforested) significantly predicted annual abundance and redistribution of Ae. taeniorhynchus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agramonte NM, Connelly CR. (2014) Black salt marsh mosquito Aedes taeniorhynchus (Wiedemann). In: EDIS.EENY591. University of Florida. Accessed 4 Apr 2020.

  • Allen TR, Shellito B (2008) Spatial interpolation and image-integrative geostatistical prediction of mosquito vectors for arboviral surveillance. Geocarto Intern 23(4):311–325

    Article  Google Scholar 

  • Andersson IH, Jaenson TGT (1987) Nectar feeding by mosquitoes in Sweden, with special reference to Culex pipiens and Cx. torrentium. Med Vet Entomol 1:59–64

    Article  CAS  PubMed  Google Scholar 

  • Anselin L, Getis A (1992) Spatial statistical analysis and geographic information systems. The Ann Reg Science 26:19–33

    Article  Google Scholar 

  • Asigau S, Parker PG (2018) The influence of ecological factors on mosquito abundance and occurrence in Galápagos. J Vector Ecol 43:125–137

    Article  PubMed  Google Scholar 

  • Barrera R, MacKay A, Amador M, Vasquez J, Smith J, Díaz A et al (2014) Mosquito vectors of West Nile virus during an epizootic outbreak in Puerto Rico. J Med Entomol 47:1185–1195

    Article  Google Scholar 

  • Bayoh MN. (2001) Studies on the development and survival of Anopheles gambiae sensu stricto at various temperatures and relative humidity. PhD Thesis, University of Durham, Durham; 2001.

  • Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JD, Rodriguez W, Feller IC (2014) Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc Nat Academy of Sci 111:723–727

    Article  CAS  Google Scholar 

  • Chamberlin RW, Sudia WD, Work TW, Coleman PH, Coleman NVF, Johnston JC Jr (1969) Arbovirus studies in South Florida, with emphasis on Venezuelan equine encephalomyelitis virus. Am J Epidemiol 89:197–210

    Article  Google Scholar 

  • Dale P, Eslami-Andargoli L, Knight J (2013) The impact of encroachment of mangroves into saltmarshes on saltwater mosquito habitats. J Vector Ecol 38:330–338

    Article  PubMed  Google Scholar 

  • Darsie RF Jr, Ward RA (2005) Identification and geographical distribution of the mosquitoes of North America, North of Mexico, 2nd edn. University Press of Florida, Gainesville

    Google Scholar 

  • De Little SC, Bowman DM, Whelan PI, Brook BW, Bradshaw CJ (2009) Quantifying the drivers of larval density patterns in two tropical mosquito species to maximize control efficiency. Environ Entomol 38:1013–1021

    Article  PubMed  Google Scholar 

  • DeAngelis BM, Sutton-Grier AE, Colden A, Arkema KK, Baillie CJ, Bennett RO, Benoit J, Blitch S, Chatwin A, Dausman A, Gittman RK, Greening HS, Henkel JR, Houge R, Howard R, Hughes AR, Lowe J, Scyphers SB, Sherwood ET, Westby S, Grabowski JH (2020) Social factors key to landscape-scale coastal restoration: lessons learned from three U.S. case studies. Sustainability. 12:869

    Article  Google Scholar 

  • DeGaetano AT (2005) Meteorological effects on adult mosquito (Culex) populations in metropolitan New Jersey. Int J Biometeorol 49:345–353

    Article  PubMed  Google Scholar 

  • DeMeillon B (1934) Studies on insects of medical importance in South Africa. South African Inst Med Res. VI:249–308

    Google Scholar 

  • Dieng H, Rahman GS, Hassan AA, Salmah MC, Satho T, Miake F et al (2012) The effects of simulated rainfall on immature population dynamics of Aedes albopictus and female oviposition. Int J Biometeorol 56:113–120

    Article  PubMed  Google Scholar 

  • Evans MV, Hintz CW, Jones L, Shiau J, Solano N, Drake JM et al (2019) Microclimate and larval habitat density predict adult Aedes albopictus abundance in urban areas. Am J Trop Med 101:362–370

    Article  Google Scholar 

  • Fehring WK (1986) (1986) Data Bases for Use in Fish and Wildlife Mitigation Planning in Tampa Bay, Florida: Project Summary. Greiner Engineering Inc., Tampa, FL, USA

    Google Scholar 

  • Ferrigno F, Jobbins DM. (1968) Open marsh water management. In: 55th Annual meeting of New Jersey mosquito extermination association, pp.104–115

  • Foster WA (1995) Mosquito sugar feeding and reproductive energetics. Ann Rev Entomol 40:443–474

    Article  CAS  Google Scholar 

  • Gorsevski PV, Gessler P, Foltz RB. (2000) Spatial prediction of landslide hazard using discriminant analysis and GIS. GIS in the Rockies 2000 Conference and Workshop Applications for the 21st Century Denver, Colorado September 25–27, 2000.

  • Gu W, Müller G, Schlein Y, Novak RJ, Beier JC (2011) Natural plant sugar sources of Anopheles mosquitoes strongly impact malaria transmission potential. PLoS One. 6(1):e15996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harden CJ, Chubb HS (1960) Observation of Aedes taeniorhynchus dispersal in extreme south Florida and Everglades National Park. Mosq News 20:136–147

    Google Scholar 

  • Hodapp CJ, Hillis WD, Dahl EV (1966) Isolation of two arboviruses from Aedes taeniorynchus Wiedemann. J Med Entomol 40:607–614

    Google Scholar 

  • Hopperstad KA, Reiskind MH (2016) Recent changes in the local distribution of Aedes aegypti (Diptera: Culicidae) in South Florida, USA. J Med Entomol 53:836–842

    Article  CAS  PubMed  Google Scholar 

  • Hopperstad KA, Sallam MF, Reiskind MH (2020) Estimations of Fine-Scale Species Distributions of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Eastern Florida. J Med Entomol 58:699–707

    Article  Google Scholar 

  • Hribar LJ, Vlach JJ, DeMay DJ, Stark LM, Stoner RL, Godsey MS, Burkhalter KL, Spoto MC, James SS, Smith JM, Fussell EM (2003) Mosquitoes infected with West Nile virus in the Florida Keys, Monroe County, Florida, USA. J Med Entomol 40:361–363

    Article  PubMed  Google Scholar 

  • Hribar LJ, Stark LM, Stoner RL, DeMay DJ, Nordholt AL, Hemmen MJ, Vlach JJ, Fussell EM (2004) Isolation of west nile virus from mosquitoes (Diptera: Culicidae) in the florida keys, Monroe County, Florida, USA. Caribe J Sci 40:362–367

    Google Scholar 

  • Hylton AR (1969) Studies on longevity of adult Eretmapodites chrysogaster, Aedes togoi and Aedes (Stegomyia) albopictus females (Diptera: Culicidae). J Med Entomol 6:147–149

    Article  CAS  PubMed  Google Scholar 

  • Kurucz N, Whelan P, Carter J, Jacups S (2009) Vegetation parameters as indicators for salt marsh mosquito larval control in coastal swamps in northern Australia. Arbovirus Res Australia 10:84–90

    Google Scholar 

  • Lawler SP, Reimer L, Thiemann T, Fritz J, Parise K, Feliz D, Elnaiem DE (2007) Effects of vegetation control on mosquitoes in seasonal freshwater wetlands. J Am Mosq Control Assoc 23:66–70

    Article  PubMed  Google Scholar 

  • Lewis RR, Estevez ED. (2020) The Ecology of Tampa Bay, Florida: An Estuarine Profile. U.S. Fish and Wildlife Service Biological Report 85. Available online: http://palmm.digital.flvc.org/islandora/object/uf%3A71939#page/cover1/mode/1up. Accessed 22 January 2020

  • Lewis RR, Gilmore RG (2007) Important considerations to achieve successful mangrove forest restoration with optimum fish habitat. Bull Mar Sci 80:823–837

    Google Scholar 

  • Lewis RR, Robison D. (1995) Setting priorities for Tampa Bay habitat protection and restoration: Restoring the balance. Tech Publ. 9.

  • Lord CC, Day JF (2001) Simulation studies of St. Louis Encephalitis and West Nile Viruses: The impact of bird mortality. Vector Borne Zoonotic Dis. 1(4):317–29

    Article  CAS  PubMed  Google Scholar 

  • Moore ID, Gessler PE, Nielsen GA, Peterson GA (1993) Soil attribute prediction using terrain analysis. Soil Sc Soc Am J 57(2):443–452

    Article  Google Scholar 

  • Mushinzimana E, Munga S, Minakawa N, Li L, Feng CC, Bian L et al (2006) Landscape determinants and remote sensing of anopheline mosquito larval habitats in the western Kenya highlands. Malar J 5:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Nayar JK, Sauerman DM Jr (1973) A comparative study of flight performance and fuel utilization as a function of age in females of Florida mosquitoes. J Insect Physiol 19:1977–1988

    Article  CAS  PubMed  Google Scholar 

  • Nmor JC, Sunahara T, Goto K, Futami K, Sonye G, Akweywa P et al (2013) Topographic models for predicting malaria vector breeding habitats: potential tools for vector control managers. Parasite Vectors 6:14

    Article  Google Scholar 

  • Okech BA, Gouagna LC, Knols BG, Kabiru EW, Killeen GF, Beier JC et al (2004) Influence of Indoor microclimate and diet on survival of Anopheles gambiae s.s. (Diptera: Culicidae) in village house conditions in western Kenya. Int J Trop Insect Sci 24:207–212

    Article  Google Scholar 

  • Provost MW (1952) The dispersal of Aedes taeniorhynchus. I Preliminary Studies Mosq News 12:174–190

    Google Scholar 

  • Reisen WK, Cayan D, Tyree M, Barker CM, Eldridge B, Dettinger M (2008) Impact of climate variation on mosquito abundance in California. J Vector Ecol 33:89–98

    Article  PubMed  Google Scholar 

  • Reynolds JL. (1961) The physiology and ecology of the immature stages of the salt marsh mosquito Aedes vigilax Skuse (Diptera: Culicidae). M.Sc. (thesis), University of New South Wales.

  • Ritchie SA. Mosquito Control Handbook: Salt Marshes and Mangrove Forests. Gainesville: University of Florida; 1992. Available online: https://ufdcimages.uflib.ufl.edu/IR/00/00/27/86/00001/IN05600.pdf Accessed April 2020

  • Rochlin I, Morris JT (2017) Regulation of salt marsh mosquito populations by the 18.6-yr lunar-nodal cycle. Ecology 98:1–10

    Article  Google Scholar 

  • Rogers D, Randolph S (2000) The global spread of malaria in a future, warmer world. Science 289:1763–1766

    Article  CAS  PubMed  Google Scholar 

  • Rowley WA, Graham CL (1968) The effect of temperature and relative humidity on the flight performance of female Aedes aegypti. J Insect Physiol 14:1251–1257

    Article  CAS  PubMed  Google Scholar 

  • Sallam MF, Al Ahmed AM, Abdel-Dayem MS, Abdullah MAR (2013) Ecological niche modeling and land cover risk areas for rift valley fever vector, Culex tritaeniorhynchus giles in Jazan. Saudi Arabia PLOS ONE 8(6):e65786. https://doi.org/10.1371/journal.pone.0065786

    Article  CAS  PubMed  Google Scholar 

  • Sallam MF, Xue RD, Pereira RM, Koehler PG (2016) Ecological niche modeling of mosquito vectors of West Nile virus in St. John’s County Florida USA. Parasit Vectors 9:371

    Article  PubMed  PubMed Central  Google Scholar 

  • Sallam MF, Fizer C, Pilant AN, Whung PY (2017a) Systematic review: Land Cover, meteorological, and socioeconomic determinants of Aedes mosquito habitat for risk mapping. Int J Environ Res Public Health 14:1230

    Article  PubMed Central  Google Scholar 

  • Sallam MF, Michaels SR, Riegel C, Pereira RM, Zipperer W, Lockaby BG, Koehler PG (2017b) Spatio-temporal distribution of vector-host contact (VHC) ratios and ecological niche modeling of the West Nile Virus mosquito vector, Culex quinquefasciatus, in the city of New Orleans, LA, USA. Int J Environ Res Public Health 14:892

    Article  PubMed Central  Google Scholar 

  • Sinclair P (1976) Notes on the biology of the salt-marsh mosquito, Aedes vigilax (Skuse) in south-east Queensland. Qld Nat 21:134–139

    Google Scholar 

  • Strickman D (1982) Stimuli affecting selection of oviposition sites by Aedes vexans (Diptera: Culicidae): Light. J Med Entomol 19:181–184

    Article  Google Scholar 

  • Sudia WD, Newhouse VF, Chappell WA (1969) Venezuelan equine encephalitis virus-vector studies following a human case in Dade County, Florida, 1968. Mosq News 29:596–600

    Google Scholar 

  • Swamy V, Fell PE, Body M, Keaney MB, Nyaku MK, McIlvain EC, Keen AL (2002) Macroinvertebrate and fish populations in a restored impounded salt marsh 21 years after the reestablishment of tidal flooding. Environ Manag 29:516–530

    Article  Google Scholar 

  • TBEPCC (Tampa Bay Estuary Program Charting the Course: The Comprehensive Conservation and Management Plan for Tampa Bay). 2017. Available online: http://www.tampabay.wateratlas.usf.edu/upload/documents/192_tbep_ccmp_2017-web.pdf Accessed 5 June 2018.

  • SJC TDC (St. Johns County Tourist Development Council). (2015) Tourism in St. Johns County. St. Johns County, Florida, Government. http://www.co.st-johns.fl.us/TDC Accessed 10 November 2020.

  • Turner PA, Streever WJ (1999) Changes in productivity of the saltmarsh mosquito, Aedes vigilax (Diptera: Culicidae), and vegetation cover following culvert removal. Aust J Ecol 24:240–248

    Article  Google Scholar 

  • Valentine MJ, Ciraola B, Jacobs GR, Arnot C, Kelly PJ, Murdock CC (2020) Effects of seasonality and land use on the diversity, relative abundance, and distribution of mosquitoes on St. Kitts West Indies. Parasit Vectors 13:543. https://doi.org/10.1186/s130

    Article  PubMed  PubMed Central  Google Scholar 

  • Vander Kelen PT, Down JA, Burkett-Cadena ND, Ottendorfer CL, Hill K, Sickerman S, Hernandez J, Jinright J, Hunt B, Lusk J, Hoover V, Armstrong K, Unnasch RS, Stark LM, Unnasch TR (2012) Habitat associations of eastern equine encephalitis transmission in Walton County Florida. J Med Entomol. 49:746–756

    Article  Google Scholar 

  • Warren SD, Hohmann MG, Auerswald K, Mitasova H (2004) An evaluation of methods to determine slope using digital elevation data. CATENA 58(3):215–233

    Article  Google Scholar 

  • Whelan P. (2007) Mosquito control in Leanyer swamp. The Northern Territory Disease Control Bulletin. 14:19-20

Download references

Acknowledgements

We thank M.K. Gaines and other employees at AMCD that maintained the AMCD historical data archives. This research was supported/funded by the Department of the Army, U.S. Army Contracting Command, Aberdeen Proving Ground, Natick Contracting Division, Ft. Detrick, MD under the Deployed War Fighter Protection (DWFP) Program W911QY2010004 awarded to AMCD.

Funding

This research was supported/funded by the Department of the Army, U.S. Army Contracting Command, Aberdeen Proving Ground, Natick Contracting Division, Ft. Detrick, MD under Deployed War Fighter Protection (DWFP) Program W911QY2010004 awarded to AMCD.

Author information

Authors and Affiliations

Authors

Contributions

WAQ and RDX conceptualized the manuscript. MRS and MFS contributed significantly to data compilation, organization, and performed all analyses and data interpretation. WAQ, JRW, MRS, YZ, MFS, and RDX contributed to writing the paper.

Corresponding author

Correspondence to Whitney A. Qualls.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qualls, W.A., Steck, M.R., Weaver, J.R. et al. Shift in the spatial and temporal distribution of Aedes taeniorhynchus following environmental and local developments in St. Johns County, Florida. Wetlands Ecol Manage 30, 1065–1080 (2022). https://doi.org/10.1007/s11273-021-09816-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-021-09816-6

Keywords

Navigation