Skip to main content
Log in

Nanocellulose-Based Materials and Recent Application for Heavy Metal Removal

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Among numerous sustainable advanced nanomaterials, nanocellulose is receiving increasing attention for its utilization in water treatment technologies due to its various specific properties and functionalities. The term “nanocellulose” is used for cellulosic material having a nanoscopic scale (or nanoscale) for their dimensional characteristics. It can be obtained in three different forms, which are fibrous form, crystalline form, or bacterial form. One of the benefits of this natural polymer is that it can be found abundantly on Earth, as most plants or waste contains the cellulose. For decades, this material has been widely used in various applications, mainly in water purification, with current studies focusing on surface functionalization of nanocellulose to enhance its properties. This brief review aims to provide the readers with the recent studies (year 2015 to year 2021) of nanocellulose properties, alongside the application of the material for removal of heavy metals from water and its reusability efficiency. In this regard, the main limitations for the specific applications of nanocellulose-based materials and its future prospective are identified in an effort to make possible enhancements in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abiaziem, C. V., Williams, A. B., Inegbenebor, A. I., Onwordi, C. T., Ehi-Eromosele, C. O., & Petrik, L. F. (2019). Adsorption of lead ion from aqueous solution unto cellulose nanocrystal from cassava peel. Journal of Physics: Conference Series, 1299, 012122.

    CAS  Google Scholar 

  • Abouzeid, R. E., Khiari, R., El-Wakil, N., & Dufresne, A. (2019). Current State and new trends in the use of cellulose nanomaterials for wastewater treatment. Biomacromolecules, 20(2), 573–597.

    Article  CAS  Google Scholar 

  • Alipour, A., Zarinabadi, S., Azimi, A., & Mirzaei, M. (2020). Adsorptive removal of Pb(II) ions from aqueous solutions by thiourea-functionalized magnetic ZnO/nanocellulose composite: Optimization by response surface methodology (RSM). International Journal of Biological Macromolecules, 151, 124–135.

    Article  CAS  Google Scholar 

  • Andrews, J. E., Brimblecombe, P., Jickells, T. D., Liss, P. S., & Reid, B. (2004). An introduction to environmental chemistry (Second.). Blackwell Publishing.

  • Awang, N. A., Salleh, W. N. W., Ismail, A. F., & Hasbullah, H. (2019). Synthesis, characterization and adsorption properties of grafted cellulose for Cr (VI) removal. Materials Today: Proceedings, 19, 1777–1786.

    Google Scholar 

  • Bian, H., Chen, L., Wang, R., & Zhu, J. (2017). Green and low-cost production of thermally stable and carboxylated cellulose nanocrystals and nanofibrils using highly recyclable dicarboxylic acids. Journal of Visualized Experiments, (119). https://doi.org/10.3791/55079

  • Bisla, V., Rattan, G., Singhal, S., & Kaushik, A. (2020). Green and novel adsorbent from rice straw extracted cellulose for efficient adsorption of Hg (II) ions in an aqueous medium. International Journal of Biological Macromolecules, 161, 194–203.

    Article  CAS  Google Scholar 

  • Chai, F., Wang, R., Yan, L., Li, G., Cai, Y., & Xi, C. (2020). Facile fabrication of pH-sensitive nanoparticles based on nanocellulose for fast and efficient As(V) removal. Carbohydrate Polymers, 245, 116511. https://doi.org/10.1016/j.carbpol.2020.116511

    Article  CAS  Google Scholar 

  • Chen, C., & Hu, L. (2018). Nanocellulose toward advanced energy storage devices: Structure and electrochemistry. Accounts of Chemical Research, 51(12), 3154–3165.

    Article  CAS  Google Scholar 

  • Chen, Y. W., & Lee, H. V. (2018). Revalorization of selected municipal solid wastes as new precursors of “green” nanocellulose via a novel one-pot isolation system: A source perspective. International Journal of Biological Macromolecules, 107, 78–92. https://doi.org/10.1016/j.ijbiomac.2017.08.143

    Article  CAS  Google Scholar 

  • Dobrowolski, R., Szcześ, A., Czemierska, M., & Jarosz-Wikołazka, A. (2017). Studies of cadmium(II), lead(II), nickel(II), cobalt(II) and chromium(VI) sorption on extracellular polymeric substances produced by Rhodococcus opacus and Rhodococcus rhodochrous. Bioresource Technology, 225, 113–120.

    Article  CAS  Google Scholar 

  • Dong, L., Hou, L., Wang, Z., Gu, P., Chen, G., & Jiang, R. (2018). A new function of spent activated carbon in BAC process: Removing heavy metals by ion exchange mechanism. Journal of Hazardous Materials, 359, 76–84.

    Article  CAS  Google Scholar 

  • Dusastre, V., & Martiradonna, L. (2017). Materials for sustainable energy. Nature Materials, 16(1), 15–15.

    Article  CAS  Google Scholar 

  • El-Tawil, R. S., El-Wakeel, S. T., Abdel-Ghany, A. E., Abuzeid, H. A. M., Selim, K. A., & Hashem, A. M. (2019). Silver/quartz nanocomposite as an adsorbent for removal of mercury (II) ions from aqueous solutions. Heliyon, 5(9), e02415.

    Article  Google Scholar 

  • Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  • Gorzin, F., Abadi, B. R., & M. . (2018). Adsorption of Cr(VI) from aqueous solution by adsorbent prepared from paper mill sludge: Kinetics and thermodynamics studies. Adsorption Science & Technology, 36(1–2), 149–169.

    Article  CAS  Google Scholar 

  • Hadi, M., Sanaei, D., Ali, I., & Bhatnagar, A. (2016). Removal of chromium (VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent : Kinetic modeling and isotherm studies. Journal of Molecular Liquids, 215, 671–679.

  • Hu, Z.-H., Omer, A. M., Ouyang, X., & Yu, D. (2018). Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II) from aqueous solution. International Journal of Biological Macromolecules, 108, 149–157.

    Article  CAS  Google Scholar 

  • JECFA. (2000). Summary Reports of the Fifty-fifth and Fifty-sixth Meetings of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). http://www.fao.org/3/Y0474E/y0474e09.htm#TopOfPage. Accessed 10 June 2020.

  • Jiang, F., Li, T., Li, Y., Zhang, Y., Gong, A., Dai, J., et al. (2018). Wood-based nanotechnologies toward sustainability. Advanced Materials, 30(1), 1703453.

    Article  CAS  Google Scholar 

  • Joseph, J., Radhakrishnan, R. C., Johnson, J. K., Joy, S. P., & Thomas, J. (2020). Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate. Materials Chemistry and Physics, 242, 122488.

    Article  CAS  Google Scholar 

  • Joseph, L., Jun, B. M., Flora, J. R. V., Park, C. M., & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142–159.

    Article  CAS  Google Scholar 

  • Kargarzadeh, H., Johar, N., & Ahmad, I. (2017). Starch biocomposite film reinforced by multiscale rice husk fiber. Composites Science and Technology, 151, 147–155.

    Article  CAS  Google Scholar 

  • Kaur, M., Kumari, S., & Sharma, P. (2020). Removal of Pb (II) from aqueous solution using nanoadsorbent of Oryza sativa husk: Isotherm, kinetic and thermodynamic studies. Biotechnology Reports, 25, e00410.

    Article  Google Scholar 

  • Kaur, M., Sharma, P., & Kumari, S. (2019). Equilibrium studies for copper removal from aqueous solution using nanoadsorbent synthesized from rice husk. SN Applied Sciences, 1(9), 988.

    Article  CAS  Google Scholar 

  • Kim, J.-H., Shim, B. S., Kim, H. S., Lee, Y.-J., Min, S.-K., Jang, D., et al. (2015). Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(2), 197–213.

    Article  Google Scholar 

  • Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., & Dorris, A. (2011). Nanocelluloses: A new family of nature-based materials. Angewandte Chemie (International ed. in English), 50(24), 5438–66.

    Article  CAS  Google Scholar 

  • Lasrado, D., Ahankari, S., & Kar, K. (2020). Nanocellulose-based polymer composites for energy applications—A review. Journal of Applied Polymer Science, 137(27), 48959.

    Article  CAS  Google Scholar 

  • Lavanya, D., Kulkarni, P. K., Dixit, M., Raavi, P. K., & Krishna, L. N. V. (2011). Sources of cellulose and their applications - A review. International Journal of Drug Formulation and Research, 2(6), 19–38.

    Google Scholar 

  • Li, J., Zuo, K., Wu, W., Xu, Z., Yi, Y., Jing, Y., et al. (2018). Shape memory aerogels from nanocellulose and polyethyleneimine as a novel adsorbent for removal of Cu(II) and Pb(II). Carbohydrate Polymers, 196, 376–384.

    Article  CAS  Google Scholar 

  • Liu, C., Jin, R.-N., Ouyang, X., & Wang, Y.-G. (2017). Adsorption behavior of carboxylated cellulose nanocrystal—polyethyleneimine composite for removal of Cr(VI) ions. Applied Surface Science, 408, 77–87.

    Article  CAS  Google Scholar 

  • Liu, P., Borrel, P. F., Božic, M., Kokol, V., Oksman, K., & P, M. A. . (2015). Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents. Journal of Hazardous Materials, 294, 177–185.

    Article  CAS  Google Scholar 

  • Lu, J., Jin, R.-N., Liu, C., Wang, Y.-F., & Ouyang, X. (2016). Magnetic carboxylated cellulose nanocrystals as adsorbent for the removal of Pb(II) from aqueous solution. International Journal of Biological Macromolecules, 93, 547–556. https://doi.org/10.1016/j.ijbiomac.2016.09.004

    Article  CAS  Google Scholar 

  • Mahfoudhi, N., & Boufi, S. (2017). Nanocellulose as a novel nanostructured adsorbent for environmental remediation: A review. Cellulose, 24(3), 1171–1197. https://doi.org/10.1007/s10570-017-1194-0

    Article  CAS  Google Scholar 

  • Maleki, S., & Karimi-Jashni, A. (2017). Effect of ball milling process on the structure of local clay and its adsorption performance for Ni(II) removal. Applied Clay Science, 137, 213–224.

    Article  CAS  Google Scholar 

  • Malucelli, L. C., Lacerda, L. G., Dziedzic, M., & da Silva Carvalho Filho, M. A. . (2017). Preparation, properties and future perspectives of nanocrystals from agro-industrial residues: A review of recent research. Reviews in Environmental Science and Bio/technology, 16(1), 131–145.

    Article  CAS  Google Scholar 

  • Manna, S., Roy, D., Saha, P., Gopakumar, D., & Thomas, S. (2017). Rapid methylene blue adsorption using modified lignocellulosic materials. Process Safety and Environmental Protection, 107, 346–356.

    Article  CAS  Google Scholar 

  • Mo, L., Pang, H., Lu, Y., Li, Z., Kang, H., Wang, M., et al. (2021). Wood-inspired nanocellulose aerogel adsorbents with excellent selective pollutants capture, superfast adsorption, and easy regeneration. Journal of Hazardous Materials, 415, 125612.

    Article  CAS  Google Scholar 

  • Mo, L., Pang, H., Tan, Y., Zhang, S., & Li, J. (2019). 3D multi-wall perforated nanocellulose-based polyethylenimine aerogels for ultrahigh efficient and reversible removal of Cu(II) ions from water. Chemical Engineering Journal, 378, 122157. https://doi.org/10.1016/j.cej.2019.122157

    Article  CAS  Google Scholar 

  • Mohamed, M. A., Salleh, W. N. W., Jaafar, J., Asri, S. E. A. M., & Ismail, A. F. (2015). Physicochemical properties of “green” nanocrystalline cellulose isolated from recycled newspaper. RSC Advances, 5(38), 29842–29849. https://doi.org/10.1039/C4RA17020B

    Article  CAS  Google Scholar 

  • Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941.

    Article  CAS  Google Scholar 

  • Navarro, R. R., Sumi, K., Fujii, N., & Matsumura, M. (1996). Mercury removal from wastewater using porous cellulose carrier modified with polyethyleneimine. Water Research, 30(10), 2488–2494.

    Article  CAS  Google Scholar 

  • Oyewo, O. A., Mutesse, B., Leswifi, T. Y., & Onyango, M. S. (2019). Highly efficient removal of nickel and cadmium from water using sawdust-derived cellulose nanocrystals. Journal of Environmental Chemical Engineering, 7(4), 103251.

    Article  CAS  Google Scholar 

  • Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., & Guan, G. (2018). Nanocellulose: Extraction and application. Carbon Resources Conversion, 1(1), 32–43. https://doi.org/10.1016/j.crcon.2018.05.004

    Article  Google Scholar 

  • Richards, H. L., Baker, P. G. L., & Iwuoha, E. (2012). Metal nanoparticle modified polysulfone membranes for use in wastewater treatment: A critical review. Journal of Surface Engineered Materials and Advanced Technology, 02(03), 183–193.

    Article  CAS  Google Scholar 

  • Sai Prasanna, N., & Mitra, J. (2020). Isolation and characterization of cellulose nanocrystals from Cucumis sativus peels. Carbohydrate Polymers, 247, 116706.

    Article  CAS  Google Scholar 

  • Sehaqui, H., de Larraya, U. P., Liu, P., Pfenninger, N., Mathew, A. P., Zimmermann, T., & Tingaut, P. (2014). Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose, 21(4), 2831–2844.

    Article  CAS  Google Scholar 

  • Septevani, A. A., Rifathin, A., Sari, A. A., Sampora, Y., Ariani, G. N., Sudiyarmanto, & Sondari, D. (2020). Oil palm empty fruit bunch-based nanocellulose as a super-adsorbent for water remediation. Carbohydrate Polymers, 229, 115433.

    Article  CAS  Google Scholar 

  • Shahzad, B., Tanveer, M., Rehman, A., Cheema, S. A., Fahad, S., Rehman, S., & Sharma, A. (2018). Nickel; whether toxic or essential for plants and environment - a review. Plant Physiology and Biochemistry, 132, 641–651. https://doi.org/10.1016/j.plaphy.2018.10.014

    Article  CAS  Google Scholar 

  • Sharma, A., Mandal, T., & Goswami, S. (2017). Cellulose nanofibers from rice straw: Process development for improved delignification and better crystallinity index. Trends in Carbohydrate Research, 9(4), 16–27.

    CAS  Google Scholar 

  • Sheikhi, A., Safari, S., Yang, H., & van de Ven, T. G. M. (2015). Copper removal using electrosterically stabilized nanocrystalline cellulose. ACS Applied Materials & Interfaces, 7, 11301–11308.

    Article  CAS  Google Scholar 

  • Singh, K., Arora, J. K., Sinha, T. J. M., & Srivastava, S. (2014). Functionalization of nanocrystalline cellulose for decontamination of Cr(III) and Cr(VI) from aqueous system: Computational modeling approach. Clean Technologies and Environmental Policy, 16(6), 1179–1191.

    Article  CAS  Google Scholar 

  • Singh, N. B., Nagpal, G., Agrawal, S., & Rachna. (2018). Water purification by using adsorbents: A review. Environmental Technology & Innovation, 11, 187–240. https://doi.org/10.1016/j.eti.2018.05.006

    Article  Google Scholar 

  • Tang, A., Liu, Y., Wang, Q., Chen, R., Liu, W., Fang, Z., & Wang, L. (2016). A new photoelectric ink based on nanocellulose/CdS quantum dots for screen-printing. Carbohydrate Polymers, 148, 29–35.

    Article  CAS  Google Scholar 

  • Thomas, B., Raj, M. C., B, A. K., H, R. M., Joy, J., Moores, A., , et al. (2018). Nanocellulose, a versatile green platform: From biosources to materials and their applications. Chemical Reviews, 118(24), 11575–11625.

    Article  CAS  Google Scholar 

  • Wang, N., Jin, R.-N., Omer, A. M., & Ouyang, X. (2017). Adsorption of Pb(II) from fish sauce using carboxylated cellulose nanocrystal: Isotherm, kinetics, and thermodynamic studies. International Journal of Biological Macromolecules, 102, 232–240.

    Article  CAS  Google Scholar 

  • WHO. (2003a). Chlorine in drinking-water: Background document for development of WHO guidelines for drinking-water quality. https://www.who.int/water_sanitation_health/dwq/chlorine.pdf. Accessed 12 June 2020.

  • WHO. (2003b). Chromium in drinking-water: Background document for development of WHO guidelines for drinking-water quality. https://www.who.int/water_sanitation_health/dwq/chemicals/chromium.pdf. Accessed 12 June 2020.

  • WHO. (2003c). Lead in drinking-water: Background document for development of WHO guidelines for drinking-water quality. https://www.who.int/water_sanitation_health/dwq/chemicals/lead.pdf. Accessed 12 June 2020.

  • WHO. (2003d). Zinc in drinking-water: Background document for development of WHO guidelines for drinking-water quality. https://www.who.int/water_sanitation_health/dwq/chemicals/zinc.pdf. Accessed 12 June 2020.

  • WHO. (2004). Copper in drinking-water: Background document for development of WHO guidelines for drinking-water quality. https://www.who.int/water_sanitation_health/dwq/chemicals/copper.pdf. Accessed 12 June 2020.

  • WHO. (2005). Nitrate and nitrite in drinking-water: Background document for development of WHO guidelines for drinking-water quality. https://www.who.int/water_sanitation_health/dwq/chemicals/nitratenitrite2ndadd.pdf. Accessed 12 June 2020.

  • Worch, E. (2012). Adsorption Technology in water treatment, fundamentals, processes, and modeling. De Gruyter.

  • Xiao, Y., Liu, Y., Wang, X., Li, M., Lei, H., & Xu, H. (2019). Cellulose nanocrystals prepared from wheat bran: Characterization and cytotoxicity assessment. International Journal of Biological Macromolecules, 140, 225–233.

    Article  CAS  Google Scholar 

  • Yu, H.-Y., Zhang, D.-Z., Lu, F.-F., & Yao, J. (2016). New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustainable Chemistry & Engineering, 4(5), 2632–2643.

    Article  CAS  Google Scholar 

  • Zhang, N., Zang, G.-L., Shi, C., Yu, H.-Q., & Sheng, G.-P. (2016). A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: Preparation, characterization, and application for Cu(II) removal. Journal of Hazardous Materials, 316, 11–18. https://doi.org/10.1016/j.jhazmat.2016.05.018

    Article  CAS  Google Scholar 

Download references

Funding

The authors received the financial support from Universiti Malaysia Pahang under grant number PGRS200301 and Ministry of Higher Education Malaysia (Grant number: RDU190379).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norazlianie Sazali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, H., Sazali, N., Salleh, W.N.W. et al. Nanocellulose-Based Materials and Recent Application for Heavy Metal Removal. Water Air Soil Pollut 232, 305 (2021). https://doi.org/10.1007/s11270-021-05245-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05245-6

Keywords

Navigation