Skip to main content

Advertisement

Log in

Hydrothermal Synthesis of Flower Like MnSe2@MoSe2 Electrode for Supercapacitor Applications

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Active electrodes of transition metal selenides attract extensive consideration in energy storage application because of its improved electrochemical performances. In this study, evolution of flower like MnSe2@MoSe2 was subsequently synthesized through one pot hydrothermal route. Growth of combined composite exposed flowerlike morphology with looser corrugated nanospikes increases surface area for redox reaction which reduces ionic diffusion pathway and improves supercapacitor performance in three-cell configurations. The best performed (MMS-3) electrode exhibited 719 Fg−1 specific capacitance and retained 99.78% capacity retention over 2000 cycles. Furthermore, as an asymmetric MnSe2@MoSe2//AC device delivered significant 75 Whkg−1 energy density at 747 Wkg−1 power density. Besides, asymmetric (MMS-3)//AC device maintained 99.16% capacity retention after constant 2000 charge discharge cycles. In a small-scale practical demonstration, MnSe2@MoSe2//AC device illuminated red LED and displayed improved electrochemical performance. Hence, both Mn (manganese) and Mo (molybdenum) mutual role promotes more affluent redox chemistry, which is beneficial for higher electrochemical activity. Thereby, Se provided greater number of electroactive sites that can aid maximum utilization of electrolyte ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gopi CVVM, Vinodh R, Sambasivam S, Obaida IM, Kim HJ (2020) J Energy Storage 27:101035. https://doi.org/10.1016/j.est.2019.101035

    Article  Google Scholar 

  2. Cheng F, Yang X, Zhang S, Lu W (2020) J Power Sources 450:227678. https://doi.org/10.1016/j.jpowsour.2019.227678

    Article  CAS  Google Scholar 

  3. Altinci C, Demir M (2020) Energy Fuels 34:7658–7665. https://doi.org/10.1021/acs.energyfuels.0c01103

    Article  CAS  Google Scholar 

  4. Lee SP, Ali GAM (2021) H HHegazy, H N Lim. K F Chong Energy Fuels 35:4559–4569. https://doi.org/10.1021/acs.energyfuels.0c04126

    Article  CAS  Google Scholar 

  5. Wang K, Bi R, Huang M, Lv B (2020) Hu Wang, C Li, HWu, Q Zhang. Inorg Chem 59:6808–6814. https://doi.org/10.1021/acs.inorgchem.0c00060

    Article  CAS  PubMed  Google Scholar 

  6. Fang Z, Xu M, Li Q, Qi M (2021) ToXu, Z Niu, N Qu, J Gu, J Wang. D Wang Langmuir 37:2816–2825. https://doi.org/10.1021/acs.langmuir.0c03580

    Article  CAS  Google Scholar 

  7. Dai M, Zhao D, Liu H, Zhu X, Wu X, Wang B (2021) ACS Appl Energy Mater 4:2637–2643. https://doi.org/10.1021/acsaem.0c03204

    Article  CAS  Google Scholar 

  8. Sharma GP (2021) P Kumar Gupta, S K Sharma, R GS Pala. S Sivakumar ACS Appl Energy Mater 4:4758–4771. https://doi.org/10.1021/acsaem.1c00357

    Article  CAS  Google Scholar 

  9. Santhosh NM, Upadhyay KK, Strazar P, Filipic G, Zavasnik J (2021) A M d Ferro, R P Silva, E Tatarova, M d F Montemor. UCvelbar ACS Appl Mater Interfaces 13:20559–20572. https://doi.org/10.1021/acsami.1c0305

    Article  CAS  PubMed  Google Scholar 

  10. Dai S, Bai Y, Shen W, Zhang S, Hu H, Fu J, Wang X, Hu C, Liu M (2021) J Power Sources 482:228915. https://doi.org/10.1016/j.jpowsour.2020.228915

    Article  CAS  Google Scholar 

  11. Du J, Zhang Y, Lv H, Chen A (2021) J Colloid Interf Sci 587:780–788. https://doi.org/10.1016/j.jcis.2020.11.037

    Article  CAS  Google Scholar 

  12. Joshi A, Tomar AK, Singh G, Sharma RK (2021) Chem Eng J 407:127122. https://doi.org/10.1016/j.cej.2020.127122

    Article  CAS  Google Scholar 

  13. Kumar PS, Prakash P, Srinivasan A, Karuppiah C (2021) J Power Sources 482:228892. https://doi.org/10.1016/j.jpowsour.2020.228892

    Article  CAS  Google Scholar 

  14. Li S, Ruan Y, Xie Q (2020) Electrochim Acta 356:136837. https://doi.org/10.1016/j.electacta.2020.136837

    Article  CAS  Google Scholar 

  15. Chhetri K, Dahal B (2021) A PTiwari, T Mukhiya, A Muthurasu, G P Ojha, M Lee, T Kim, S Chae, H Y Kim. ACS Appl Energy Mater 4:404–415. https://doi.org/10.1021/acsaem.0c02340

    Article  CAS  Google Scholar 

  16. Barik R, Yadav AK, Jha SN, Bhattacharyya D (2021) P PIngole. ACS Appl Mater Interfaces 13:8102–8119. https://doi.org/10.1021/acsami.0c15818

    Article  CAS  PubMed  Google Scholar 

  17. Lu J, Pu L, Wang W, Dai Y (2020) J Colloid Interf Sci 563:435–446. https://doi.org/10.1016/j.jcis.2019.12.101

    Article  CAS  Google Scholar 

  18. Sahoo S, Pazhamalai P, Krishnamoorthy K, Kim SJ (2018) Electrochim Acta 268:403–410. https://doi.org/10.1016/j.electacta.2018.02.116

    Article  CAS  Google Scholar 

  19. Qiao F, Chen L, Li X, Li L, Ai S (2014) Sens Actuator B Chem 193:255–262. https://doi.org/10.1016/j.snb.2013.11.108

    Article  CAS  Google Scholar 

  20. Sarma R, Das Q, Hussain A, Ramteke A, Choudhury A, Mohanta D (2014) Nanotechnology 25:275101. https://doi.org/10.1088/0957-4484/25/27/275101

    Article  CAS  PubMed  Google Scholar 

  21. Ge P, Hou H, Banks CE, Foster CW, Li S, Zhang Y, He J, Zhang C, Ji X (2018) Energy Stor Mater 12:310–323. https://doi.org/10.1016/j.ensm.2018.02.012

    Article  Google Scholar 

  22. Javed MS, Shah SSA, Hussain S, Mai W (2020) Chem Eng J 382:122814. https://doi.org/10.1016/j.cej.2019.122814

    Article  CAS  Google Scholar 

  23. Sakthivel M, Ramaraj S, Chen SM, Chen TW, Ho KC, Appl ACS (2019) Mater Interfaces 11:18483–18493

    Article  CAS  Google Scholar 

  24. Peng H, Wei C, Wang K, Meng T, Ma G, Lei Z, Gong X, Appl ACS (2017) Mater Interfaces 9:17067–17075. https://doi.org/10.1021/acsami.7b02776

    Article  CAS  Google Scholar 

  25. de Oliveira HP, Sydlik SA, Swager TM (2013) J Phys Chem C 117:10270–10276. https://doi.org/10.1021/jp400344u

    Article  CAS  Google Scholar 

  26. Chen H, Hu L, Chen M, Yan Y, Wu L (2014) Adv Funct Mater 24:934–942. https://doi.org/10.1002/adfm.201301747

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by UGC-SAP, DST-FIST, DST-PURSE, MHRD-RUSA grants.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Yuvakkumar or P. Senthil Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidhya, M.S., Yuvakkumar, R., Kumar, P.S. et al. Hydrothermal Synthesis of Flower Like MnSe2@MoSe2 Electrode for Supercapacitor Applications. Top Catal 65, 615–622 (2022). https://doi.org/10.1007/s11244-021-01472-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01472-7

Keywords

Navigation