Skip to main content
Log in

Real-time simulation of violent boiling in concentrated sulfuric acid dilution

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Concentrated sulfuric acid dilution is an essential yet hazardous experiment in chemistry education. Incorrect operations can lead to intensive boiling and splattering or even endanger the experiment operator. This paper presents a novel approach to simulate the violent boiling phenomenon in real time and an efficient method to deal with particle penetration caused by fast motion. We introduce the anti-viscosity method to inject momentum into high-temperature particles and capture the chaotic dynamics in the boiling process with small computational overhead. To address the particle penetration issue, we propose a new constraint type called flask constraint which uses radius lookup tables to represent axisymmetric shapes efficiently and projects the particles back into their container when penetration occurs. These methods are integrated into a virtual reality application to simulate the concentrated sulfuric acid dilution experiment and demonstrate the efficiency and effectiveness of our method. Our work improves the capability and stability of particle-based fluid solvers and provides appealing solutions for integrating fluid simulation into interactive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akinci, N., Akinci, G., Teschner, M.: Versatile surface tension and adhesion for SPH fluids. ACM Trans. Graph. (TOG) 32(6), 1–8 (2013)

    Article  Google Scholar 

  2. Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., Teschner, M.: Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Graph. (TOG) 31(4), 1–8 (2012)

    Article  Google Scholar 

  3. Bender, J., Koschier, D.: Divergence-free SPH for incompressible and viscous fluids. IEEE Trans. Vis. Comput. Graph. 23(3), 1193–1206 (2016)

    Article  Google Scholar 

  4. Bender, J., Müller, M., Macklin, M.: A survey on position based dynamics, 2017. In: Proceedings of the European Association for Computer Graphics: Tutorials, EG ’17. Eurographics Association, Goslar, DEU (2017). https://doi.org/10.2312/egt.20171034

  5. Chowdhury, T.I., Ferdous, S.M.S., Quarles, J.: VR disability simulation reduces implicit bias towards persons with disabilities. IEEE Trans. Vis. Comput. Graph. (2019)

  6. Cummins, S.J., Rudman, M.: An SPH projection method. J. Comput. Phys. 152(2), 584–607 (1999)

    Article  MathSciNet  Google Scholar 

  7. Desbrun, M., Gascuel, M.P.: Smoothed particles: A new paradigm for animating highly deformable bodies. In: Computer Animation and Simulation’96, pp. 61–76. Springer (1996)

  8. Extend Reality Ltd: VRTK - virtual reality toolkit. https://www.vrtk.io/

  9. Goswami, P., Schlegel, P., Solenthaler, B., Pajarola, R.: Interactive SPH simulation and rendering on the GPU. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’10, p. 55–64. Eurographics Association, Goslar, DEU (2010)

  10. Green, S.: Particle simulation using cuda. NVIDIA whitepaper 6, 121–128 (2010)

    Google Scholar 

  11. Gu, Y., Yang, Y.H.: Physics based boiling bubble simulation. In: SIGGRAPH ASIA 2016 Technical Briefs, SA ’16. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/3005358.3005385

  12. Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., Teschner, M.: Implicit incompressible SPH. IEEE Trans. Vis. Comput. Graph. 20(3), 426–435 (2013)

    Article  Google Scholar 

  13. Kim, T., Carlson, M.: A simple boiling module. In: Symposium on Computer Animation: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, vol. 2, pp. 27–34. Citeseer (2007)

  14. Koschier, D., Bender, J., Solenthaler, B., Teschner, M.: Smoothed Particle Hydrodynamics Techniques for the Physics Based Simulation of Fluids and Solids. In: W. Jakob, E. Puppo (eds.) Eurographics 2019 - Tutorials. The Eurographics Association (2019). https://doi.org/10.2312/egt.20191035

  15. Leenson, I.: Sulfuric acid and water: paradoxes of dilution. J. Chem. Educ. 81(7), 991 (2004)

    Article  Google Scholar 

  16. Li, Z., Xiao, S.: Boiling simulation of position based fluid. In: Proceedings of the 4th International Conference on Virtual Reality, pp. 142–146 (2018)

  17. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)

    Article  Google Scholar 

  18. Luo, T., Zhang, M., Pan, Z., Li, Z., Cai, N., Miao, J., Chen, Y., Xu, M.: Dream-experiment: a MR user interface with natural multi-channel interaction for virtual experiments. IEEE Trans. Vis. Comput. Graph. 26(12), 3524–3534 (2020)

    Article  Google Scholar 

  19. Macklin, M., Müller, M.: Position based fluids. ACM Trans. Graph. (TOG) 32(4), 1–12 (2013)

    Article  Google Scholar 

  20. Macklin, M., Müller, M., Chentanez, N., Kim, T.Y.: Unified particle physics for real-time applications. ACM Trans. Graph. (TOG) 33(4), 1–12 (2014)

    Article  Google Scholar 

  21. Macklin, M., Storey, K., Lu, M., Terdiman, P., Chentanez, N., Jeschke, S., Müller, M.: Small steps in physics simulation. In: Proceedings of the 18th Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 1–7 (2019)

  22. Maier, P., Klinker, G.: Augmented chemical reactions: an augmented reality tool to support chemistry teaching. In: 2013 2nd Experiment@ International Conference (exp. at’13), pp. 164–165. IEEE (2013)

  23. Mihalef, V., Unlusu, B., Metaxas, D., Sussman, M., Hussaini, M.Y.: Physics based boiling simulation. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 317–324 (2006)

  24. Monaghan, J.J.: Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30(1), 543–574 (1992)

    Article  Google Scholar 

  25. Monaghan, J.J.: Simulating free surface flows with SPH. J. Comput. Phys. 110(2), 399–406 (1994)

    Article  Google Scholar 

  26. Müller, M., Charypar, D., Gross, M.H.: Particle-based fluid simulation for interactive applications. In: Symposium on Computer animation, pp. 154–159 (2003)

  27. Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. J. Vis. Commun. Image Represent. 18(2), 109–118 (2007)

    Article  Google Scholar 

  28. Müller, M., Solenthaler, B., Keiser, R., Gross, M.: Particle-based fluid–fluid interaction. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 237–244 (2005)

  29. NVIDIA: Manual – NVIDIA flex 1.2.0 documentation. https://gameworksdocs.nvidia.com/FleX/1.2/lib_docs/manual.html

  30. Pan, J., Zhang, L., Yu, P., Shen, Y., Wang, H., Hao, H., Qin, H.: Real-time VR simulation of laparoscopic cholecystectomy based on parallel position-based dynamics in GPU. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 548–556. IEEE (2020)

  31. Prakash, M., Cleary, P.W., Pyo, S.H., Woolard, F.: A new approach to boiling simulation using a discrete particle based method. Comput. Graph. 53, 118–126 (2015)

    Article  Google Scholar 

  32. Schechter, H., Bridson, R.: Ghost SPH for animating water. ACM Trans. Graph. (TOG) 31(4), 1–8 (2012)

    Article  Google Scholar 

  33. Solenthaler, B., Pajarola, R.: Predictive-corrective incompressible SPH. In: ACM SIGGRAPH 2009 Papers, SIGGRAPH ’09. Association for Computing Machinery, New York, NY, USA (2009). https://doi.org/10.1145/1576246.1531346

  34. Sussman, M.: A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J. Comput. Phys. 187(1), 110–136 (2003)

    Article  MathSciNet  Google Scholar 

  35. Thomsen, J.: Thermochemische untersuchungen: bd. Metalloide. 1882, vol. 2. JA Barth (1882)

  36. van der Laan, W.J., Green, S., Sainz, M.: Screen space fluid rendering with curvature flow. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, I3D ’09, p. 91–98. Association for Computing Machinery, New York, NY, USA (2009)

  37. Xiao, X., Zhao, S., Meng, Y., Soghier, L., Zhang, X., Hahn, J.: A physics-based virtual reality simulation framework for neonatal endotracheal intubation. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 557–565. IEEE (2020)

  38. Yu, J., Turk, G.: Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM Trans. Graph. (TOG) 32(1), 1–12 (2013)

    Article  Google Scholar 

  39. Zhang, S., Yang, X., Wu, Z., Liu, H.: Position-based fluid control. In: Proceedings of the 19th Symposium on Interactive 3D Graphics and Games, pp. 61–68 (2015)

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFB1004902) and the National Natural Science Foundation of China (61772329, 61373085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xubo Yang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 42104 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Sang, T., Ma, Y. et al. Real-time simulation of violent boiling in concentrated sulfuric acid dilution. Vis Comput 37, 2631–2642 (2021). https://doi.org/10.1007/s00371-021-02208-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02208-0

Keywords

Navigation