Skip to main content
Log in

Optimal Setting of Membership Functions for Interval Type-2 Fuzzy Tracking Controllers Using a Shark Smell Metaheuristic Algorithm

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This article describes the application of a variant of the shark smell optimization (VSSO) biological inspired algorithm in the optimal design of a type-2 fuzzy controller. We show how the performance of VSSO is based on the frontal and rotational movement of the shark when navigating a dimensional search domain, which is based on the food-seeking behavior of sharks. The optimization of the design of a Mamdani interval type-2 fuzzy controller (IT2-FLC) applying VSSO is also described. The optimized controller is tested with the navigation of an autonomous mobile robot (AMR) in an unknown and changing environment. This work was developed as follows: first, the VSSO algorithm is improved by adjusting its main alpha and beta parameters with a fuzzy system, later the parameter values of the fuzzy controller input/output membership functions are optimized. Finally, a comparison is made between the results of type-1 (T1) and interval type-2 fuzzy controllers applying the proposed methodology. When comparing the T1 and IT2-FLC controllers, the application of the VSSO algorithm in T1-FLC shows good performance in robot navigation; however, IT2-FLC presents better performance due to its ability to handle higher levels of uncertainty. The performance evaluation of the proposed method and its application in different navigation problems has been carried out through computer simulations using Matlab-Simulink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

References

  1. Yildiz, A.R.: Comparison of evolutionary-based optimization algorithms for structural design optimization. Eng. Appl. Artif. Intell. 26(1), 327–333 (2013). https://doi.org/10.1016/j.engappai.2012.05.014

    Article  Google Scholar 

  2. Vesterstrm, J., Thomsen, R.: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753) https://doi.org/10.1109/cec.2004.1331139 (2004)

  3. Al-Jarrah, R., Shahzad, A., Roth, H.: Path planning and motion coordination for multi-robots system using probabilistic neuro-fuzzy. IFAC-PapersOnLine 28(10), 46–51 (2015). https://doi.org/10.1016/j.ifacol.2015.08.106

    Article  Google Scholar 

  4. Caraveo, C., Valdez, F., Castillo, O.: Optimization of fuzzy controller design using a new bee colony algorithm with fuzzy dynamic parameter adaptation. Appl. Soft Comput. 43, 131–142 (2016). https://doi.org/10.1016/j.asoc.2016.02.033

    Article  Google Scholar 

  5. Amador-Angulo, L., Mendoza, O., Sensors, J.C., undefined 2016.: Fuzzy sets in dynamic adaptation of parameters of a bee colony optimization for controlling the trajectory of an autonomous mobile robot. mdpi.com. Accessed 19 May 2019. https://www.mdpi.com/1424-8220/16/9/1458

  6. Olivas, F., Valdez, F., Castillo, O.: Fuzzy classification system design using PSO with dynamic parameter adaptation through fuzzy logic. Stud. Comput. Intell. 574, 29–47 (2015). https://doi.org/10.1007/978-3-319-10960-2_2

    Article  Google Scholar 

  7. Olivas, F., Valdez, F., Castillo, O., Gonzalez, C.I., Martinez, G., Melin, P.: Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Appl. Soft Comput. J. 53, 74–87 (2017). https://doi.org/10.1016/j.asoc.2016.12.015

    Article  Google Scholar 

  8. Abedinia, O., Amjady, N., Ghasemi, A.: A new metaheuristic algorithm based on shark smell optimization. Complexity (2016). https://doi.org/10.1002/cplx.21634

    Article  MathSciNet  Google Scholar 

  9. Bayraktar, Z., Komurcu, M., Werner, D.H.: Wind Driven Optimization (WDO): a novel nature-inspired optimization algorithm and its application to electromagnetics. In: 2010 IEEE Int. Symp. Antennas Propag. CNC-USNC/URSI Radio Sci. Meet.—Lead. Wave, AP-S/URSI 2010, no. 1, pp. 0–3, 2010. https://doi.org/10.1109/APS.2010.5562213 (2010)

  10. Bernal, E., Castillo, O., Soria, J., Valdez, F.: Galactic swarm optimization with adaptation of parameters using fuzzy logic for the optimization of mathematical functions. Stud. Comput. Intell. 749, 131–140 (2018)

    Article  Google Scholar 

  11. Ochoa, P., Castillo, O., Soria, J.: Differential evolution with dynamic adaptation of parameters for the optimization of fuzzy controllers, pp. 275–288 (2014)

  12. Perez, J., Valdez, F., Castillo, O., Roeva, O.: Bat algorithm with parameter adaptation using Interval Type-2 fuzzy logic for benchmark mathematical functions. In: 2016 IEEE 8th International Conference on Intelligent Systems, IS 2016—Proceedings, pp. 120–127, https://doi.org/10.1109/IS.2016.7737409 (2016)

  13. Pérez, J., Valdez, F., Castillo, O.: Modification of the bat algorithm using type-2 fuzzy logic for dynamical parameter adaptation. Stud. Comput. Intell. 667, 343–355 (2017)

    Article  Google Scholar 

  14. Castillo, O., Melin, P.: Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic. Stud. Fuzziness Soft Comput. 223, 121–132 (2008). https://doi.org/10.1007/978-3-540-76284-3_10

    Article  Google Scholar 

  15. Mamdani, E.H., Assilian, S.: An experimental in linguistic synthesis with a fuzzy logic controller. Int. J. Man. Mach. Stud. 7(1), 1–13 (1975). https://doi.org/10.1006/ijhc.1973.0303

    Article  MATH  Google Scholar 

  16. Mendel, J.M.: On KM algorithms for solving type-2 fuzzy set problems. IEEE Trans. Fuzzy Syst. (2013). https://doi.org/10.1109/TFUZZ.2012.2227488

    Article  Google Scholar 

  17. Ochoa, P., Castillo, O., Soria, J.: Differential evolution algorithm with interval type-2 fuzzy logic for the optimization of the mutation parameter. Stud. Comput. Intell. 749, 55–65 (2018)

    Article  Google Scholar 

  18. Ochoa, P., Castillo, O., Soria, J.: Fuzzy differential evolution method with dynamic parameter adaptation using type-2 fuzzy logic. In: 2016 IEEE 8th International Conference on Intelligent Systems, IS 2016—Proceedings, pp. 113–118, https://doi.org/10.1109/IS.2016.7737408 (2016)

  19. Caraveo, C., Valdez, F., Castillo, O.: Optimization of fuzzy controller design using a new bee colony algorithm with fuzzy dynamic parameter adaptation. Appl. Soft Comput. J. 43, 131–142 (2016). https://doi.org/10.1016/j.asoc.2016.02.033

    Article  Google Scholar 

  20. Amador-Angulo, L., Mendoza, O., Castro, J.R., Rodríguez-Díaz, A., Melin, P., Castillo, O.: Fuzzy sets in dynamic adaptation of parameters of a bee colony optimization for controlling the trajectory of an autonomous mobile robot. Sensors 16(9), 1458 (2016). https://doi.org/10.3390/s16091458

    Article  Google Scholar 

  21. Zamani, A.A., Bijami, E., Sheikholeslam, F., Jafrasteh, B.: Optimal fuzzy load frequency controller with simultaneous auto-tuned membership functions and fuzzy control rules. Turkish J. Electr. Eng. Comput. Sci. (2014). https://doi.org/10.3906/elk-1203-3

    Article  Google Scholar 

  22. Oveis, A., Amjady, N., Ali, G.: A new metaheuristic algorithm based on shark smell optimization. Complexity (2014). https://doi.org/10.1002/cplx

    Article  Google Scholar 

  23. Ehteram, M., Karami, H., Mousavi, S.F., El-Shafie, A., Amini, Z.: Optimizing dam and reservoirs operation based model utilizing shark algorithm approach. Knowl.-Based Syst. 122, 26–38 (2017). https://doi.org/10.1016/j.knosys.2017.01.026

    Article  Google Scholar 

  24. Juma, S.A., Muriithi, C.M., Ngoo, L.M.: Optimal switching sequence using a metaheuristic algorithm for feeder reconfiguration. Int. J. Eng. Res. Technol. 11(8), 1329–1346 (2018)

    Google Scholar 

  25. Bayraktar, Z., Komurcu, M., Werner, D.H.: Wind Driven Optimization (WDO): a novel nature-inspired optimization algorithm and its application to electromagnetics. https://doi.org/10.1109/APS.2010.5562213 (2010)

  26. Pandey, A., Parhi, D.R.: Optimum path planning of mobile robot in unknown static and dynamic environments using Fuzzy-Wind Driven Optimization algorithm. Def. Technol. 13(1), 47–58 (2017). https://doi.org/10.1016/j.dt.2017.01.001

    Article  Google Scholar 

  27. Zadeh, L.A.: Fuzzy sets. Inf. Control (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  28. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. (1978). https://doi.org/10.1016/0165-0114(78)90029-5

    Article  MathSciNet  MATH  Google Scholar 

  29. Wu, D., Mendel, J.M.: Enhanced Karnik-Mendel algorithms. IEEE Trans. Fuzzy Syst. (2009). https://doi.org/10.1109/TFUZZ.2008.924329

    Article  MATH  Google Scholar 

  30. Ibrahim, M.T., Hanafi, D., Ghoni, R.: Autonomous navigation for a dynamical hexapod robot using fuzzy logic controller. Procedia Eng. 38, 330–341 (2012). https://doi.org/10.1016/j.proeng.2012.06.042

    Article  Google Scholar 

  31. Garcia, M.A.P., Montiel, O., Castillo, O., Sepúlveda, R., Melin, P.: Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation. Appl. Soft Comput. J. 9(3), 1102–1110 (2009). https://doi.org/10.1016/j.asoc.2009.02.014

    Article  Google Scholar 

  32. El-Ferik, S., TariqNasir, M., Baroudi, U.: A Behavioral Adaptive Fuzzy controller of multi robots in a cluster space. Appl. Soft Comput. J. 44, 117–127 (2016). https://doi.org/10.1016/j.asoc.2016.03.018

    Article  Google Scholar 

  33. Eberhart, R.C., Shi, Y.: Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 Congress on Evolutionary Computation. https://doi.org/10.1109/cec.2001.934374 (2001)

  34. Castillo, O., Melin, P., Pedrycz, W.: Design of interval type-2 fuzzy models through optimal granularity allocation. Appl. Soft Comput. J. 11(8), 5590–5601 (2011). https://doi.org/10.1016/j.asoc.2011.04.005

    Article  Google Scholar 

  35. Castillo, O., Melin, P.: Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic. Stud. Fuzziness Soft Comput. (2008). https://doi.org/10.1007/978-3-540-76284-3_10

    Article  Google Scholar 

  36. Sunisith, S., Joseph, L., Saritha, M.: Comparison of Fuzzy PID controller with conventional PID controller in controlling the speed of a brushless DC motor. Int. Electr. Eng. J. 5(12), 1665–1672 (2014)

    Google Scholar 

  37. Pérez, J., Valdez, F., Castillo, O.: A new bat algorithm with fuzzy logic for dynamical parameter adaptation and its applicability to fuzzy control design. Stud. Comput. Intell. 574, 65–79 (2015). https://doi.org/10.1007/978-3-319-10960-2_4

    Article  Google Scholar 

  38. Bidar, M., Kanan, H.R.: Modified firefly algorithm using fuzzy tuned parameters. In: 2013 13th Iranian Conference on Fuzzy Systems (IFSC). https://doi.org/10.1109/IFSC.2013.6675634 (2013)

  39. Ahmadigorji, M., Amjady, N.: A multiyear DG-incorporated framework for expansion planning of distribution networks using binary chaotic shark smell optimization algorithm. Energy (2016). https://doi.org/10.1016/j.energy.2016.02.088

    Article  Google Scholar 

  40. Bagheri, M., Sultanbek, A., Abedinia, O., Naderi, M.S., Naderi, M.S., Ghadimi, N.: Multi-objective shark smell optimization for solving the reactive power dispatch problem. In: 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe). https://doi.org/10.1109/EEEIC.2018.8494502 (2018)

  41. Astudillo, L., Melin, P., Castillo, O.: Optimization of type-2 and type-1 fuzzy tracking controllers for an autonomous mobile robot under perturbed torques by means of a chemical optimization paradigm. Stud. Fuzziness Soft Comput. 294, 3–26 (2013). https://doi.org/10.1007/978-3-642-35323-9-1

    Article  Google Scholar 

  42. Caraveo, C., Valdez, F., Castillo, O.: A new meta-heuristics of optimization with dynamic adaptation of parameters using type-2 fuzzy logic for trajectory control of a mobile robot. Algorithms 10(3), 85 (2017). https://doi.org/10.3390/a10030085

    Article  MathSciNet  Google Scholar 

  43. Brockett, R.W.: Asymptotic stability and feedback stabilization. Differ. Geom. Control Theory 27(1), 181–191 (1983)

    MathSciNet  MATH  Google Scholar 

  44. Eberhart, R., Kennedy, J.: New optimizer using particle swarm theory. In: MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. https://doi.org/10.1109/mhs.1995.494215 (1995)

  45. Oltean, S.E., Dulau, M., Puskas, R.: Position control of Robotino mobile robot using fuzzy logic. In: 2010 IEEE Int. Conf. Autom. Qual. Testing, Robot, pp. 1–6. https://doi.org/10.1109/AQTR.2010.5520855 (2010)

  46. Cuevas, F., Castillo, O., Cortes-Antonio, P.: Towards an adaptive control Strategy based on type-2 fuzzy logic for autonomous mobile robots. In: IEEE International Conference on Fuzzy Systems, vol. 2019. https://doi.org/10.1109/FUZZ-IEEE.2019.8858801 (2019)

  47. Cuevas, F., Castillo, O., Cortes, P.: Towards a control strategy based on type-2 fuzzy logic for an autonomous mobile robot, pp. 301–314 (2020)

  48. Ontiveros-Robles, E., Melin, P., Castillo, O.: Comparative analysis of noise robustness of type 2 fuzzy logic controllers. Kybernetika 54(1), 175–201 (2018). https://doi.org/10.14736/kyb-2018-1-0175

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuevas, F., Castillo, O. & Cortes, P. Optimal Setting of Membership Functions for Interval Type-2 Fuzzy Tracking Controllers Using a Shark Smell Metaheuristic Algorithm. Int. J. Fuzzy Syst. 24, 799–822 (2022). https://doi.org/10.1007/s40815-021-01136-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01136-4

Keywords

Navigation