Skip to main content

Advertisement

Log in

RSCMDA: Prediction of Potential miRNA–Disease Associations Based on a Robust Similarity Constraint Learning Method

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

With the rapid development of biotechnology and computer technology, increasing studies have shown that the occurrence of many diseases in the human body is closely related to the dysfunction of miRNA, and the relationship between them has become a new research hotspot. Exploring disease-related miRNAs information provides a new perspective for understanding the etiology and pathogenesis of diseases. In this study, we proposed a new method based on similarity constrained learning (RSCMDA) to infer disease-associated miRNAs. Considering the problems of noise and incomplete information in current biological datasets, we designed a new framework RSCMDA, which can learn a new disease similarity network and miRNA similarity network based on the existing biological information, and then update the predicted miRNA–disease associations using robust similarity constraint learning method. Consequently, the AUC scores obtained in the global and local cross-validation of RSCMDA are 0.9465 and 0.8494, respectively, which are superior to the other methods. Besides, the prediction performance of RSCMDA is further confirmed by the case study on lung Neoplasms, because 94% of the top 50 miRNAs predicted by the RSCMDA method are confirmed from the existing biological databases or research results. All the results show that RSCMDA is a reliable and effective framework, which can be used as new technology to explore the relationship between miRNA and disease.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhu X, Wang X, Zhao H, Pei T, Wang LJFG (2020) BHCMDA: a new biased heat conduction based method for potential MiRNA–disease association prediction. Front Genet. https://doi.org/10.3389/fgene.2020.00384

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854. https://doi.org/10.1016/0092-8674(93)90529-Y

    Article  CAS  PubMed  Google Scholar 

  3. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309(5740):1577–1581. https://doi.org/10.1126/science.1113329

    Article  CAS  PubMed  Google Scholar 

  4. Usha S, Jyothi MN, Suchithra B, Dixit R, Rai DV, Nagesh babu R (2017) Computational identification of MicroRNAs and their targets from finger millet (Eleusine coracana). Interdiscip Sci Comput Life Sci 9(1):72–79. https://doi.org/10.1007/s12539-015-0130-y

    Article  CAS  Google Scholar 

  5. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862. https://doi.org/10.1016/0092-8674(93)90530-4

    Article  CAS  PubMed  Google Scholar 

  6. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–1123. https://doi.org/10.1016/j.cell.2007.10.054

    Article  CAS  PubMed  Google Scholar 

  7. Liu JT, Chen ZY, Xiang JB, Gu XD (2018) MicroRNA-155 acts as a tumor suppressor in colorectal cancer by targeting CTHRC1 in vitro. Oncol Lett 15(4):5561–5568. https://doi.org/10.3892/ol.2018.8069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang QH, Hao YY, Wang GH, Juan LR, Zhang TJ, Teng MX, Liu YL, Wang YD (2010) Prioritization of disease microRNAs through a human phenome-microRNAome network. BMC Syst Biol. https://doi.org/10.1186/1752-0509-4-S1-S2

    Article  PubMed  PubMed Central  Google Scholar 

  9. Xu J, Li CX, Lv JY, Li YS, Xiao Y, Shao TT, Huo X, Li X, Zou Y, Han QL, Li X, Wang LH, Ren H (2011) Prioritizing candidate disease miRNAs by topological features in the miRNA target-dysregulated network: case study of prostate cancer. Mol Cancer Ther 10(10):1857–1866. https://doi.org/10.1158/1535-7163.MCT-11-0055

    Article  CAS  PubMed  Google Scholar 

  10. Shi HB, Xu J, Zhang GD, Xu LD, Li CQ, Wang L, Zhao Z, Jiang W, Guo Z, Li X (2013) Walking the interactome to identify human miRNA–disease associations through the functional link between miRNA targets and disease genes. BMC Syst Biol. https://doi.org/10.1186/1752-0509-7-101

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mork S, Pletscher-Frankild S, Caro AP, Gorodkin J, Jensen LJ (2014) Protein-driven inference of miRNA–disease associations. Bioinformatics 30(3):392–397. https://doi.org/10.1093/bioinformatics/btt677

    Article  CAS  PubMed  Google Scholar 

  12. Xu CH, Ping YY, Li X, Zhao HY, Wang L, Fan HH, Xiao Y, Li X (2014) Prioritizing candidate disease miRNAs by integrating phenotype associations of multiple diseases with matched miRNA and mRNA expression profiles. Mol Biosyst 10(11):2800–2809. https://doi.org/10.1039/c4mb00353e

    Article  CAS  PubMed  Google Scholar 

  13. Bandyopadhyay S, Mitra R, Maulik U, Zhang MQ (2010) Development of the human cancer microRNA network. Silence 1(1):6. https://doi.org/10.1186/1758-907X-1-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun DD, Li A, Feng HQ, Wang MH (2016) NTSMDA: prediction of miRNA–disease associations by integrating network topological similarity. Mol Biosyst 12(7):2224–2232. https://doi.org/10.1039/c6mb00049e

    Article  CAS  PubMed  Google Scholar 

  15. You ZH, Huang ZA, Zhu ZX, Yan GY, Li ZW, Wen ZK, Chen X (2017) PBMDA: a novel and effective path-based computational model for miRNA–disease association prediction. Plos Comput Biol. https://doi.org/10.1371/journal.pcbi.1005455

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen X, Guan NN, Li JQ, Yan GY (2018) GIMDA: graphlet interaction-based MiRNA–disease association prediction. J Cell Mol Med 22(3):1548–1561. https://doi.org/10.1111/jcmm.13429

    Article  CAS  PubMed  Google Scholar 

  17. Chen X, Wang LY, Huang L (2018) NDAMDA: network distance analysis for MiRNA–disease association prediction. J Cell Mol Med 22(5):2884–2895. https://doi.org/10.1111/jcmm.13583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zeng XX, Liu L, Lu LY, Zou Q (2018) Prediction of potential disease-associated microRNAs using structural perturbation method. Bioinformatics 34(14):2425–2432. https://doi.org/10.1093/bioinformatics/bty112

    Article  CAS  PubMed  Google Scholar 

  19. Chen X, Yan CC, Zhang XT, Li ZH, Deng LX, Zhang YD, Dai QH (2015) RBMMMDA: predicting multiple types of disease-microRNA associations. Sci Rep. https://doi.org/10.1038/srep13877

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen X, Yan CC, Zhang X, You ZH, Huang YA, Yan GY (2016) HGIMDA: heterogeneous graph inference for miRNA–disease association prediction. Oncotarget 7(40):65257–65269. https://doi.org/10.18632/oncotarget.11251

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen X, Huang L (2017) LRSSLMDA: laplacian regularized sparse subspace learning for MiRNA–disease association prediction. Plos Comput Biol. https://doi.org/10.1371/journal.pcbi.1005912

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen X, Niu YW, Wang GH, Yan GY (2017) MKRMDA: multiple kernel learning-based Kronecker regularized least squares for MiRNA–disease association prediction. J Transl Med. https://doi.org/10.1186/s12967-017-1340-3

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen X, Wu QF, Yan GY (2017) RKNNMDA: ranking-based KNN for MiRNA–disease association prediction. RNA Biol 14(7):952–962. https://doi.org/10.1080/15476286.2017.1312226

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen X, Huang L, Xie D, Zhao Q (2018) EGBMMDA: extreme gradient boosting machine for MiRNA–disease association prediction. Cell Death Dis. https://doi.org/10.1038/s41419-017-0003-x

    Article  PubMed  PubMed Central  Google Scholar 

  25. Qu Y, Zhang HX, Liang C, Ding PJ, Luo JW (2018) SNMDA: a novel method for predicting microRNA–disease associations based on sparse neighbourhood. J Cell Mol Med 22(10):5109–5120. https://doi.org/10.1111/jcmm.13799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu SP, Liang C, Xiao Q, Li GH, Ding PJ, Luo JW (2018) GLNMDA: a novel method for miRNA–disease association prediction based on global linear neighborhoods. RNA Biol 15(9):1215–1227. https://doi.org/10.1080/15476286.2018.1521210

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zheng K, You ZH, Wang L, Li YR, Zeng HT (2020) MISSIM: an incremental learning-based model with applications to the prediction of miRNA–disease association. IEEE Trans Comput Biol Bioinform. https://doi.org/10.1109/TCBB.2020.3013837

    Article  Google Scholar 

  28. Li HY, You ZH, Li ZW, Zhou JR, Hu PW (2020) A network embedding-based method for predicting miRNA–disease associations by integrating multiple information. BMC Bioinform. https://doi.org/10.1007/978-3-030-60796-8_31

    Article  Google Scholar 

  29. Li W, Cheng ZJBRI (2021) Prediction of miRNA–disease association using deep collaborative filtering. Biomed Res Int. https://doi.org/10.1155/2021/6652948

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q (2014) HMDD v20: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res 42:D1070–D1074. https://doi.org/10.1093/nar/gkt1023

    Article  CAS  PubMed  Google Scholar 

  31. Wang D, Wang JA, Lu M, Song F, Cui QH (2010) Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 26(13):1644–1650. https://doi.org/10.1093/bioinformatics/btq241

    Article  CAS  PubMed  Google Scholar 

  32. Wang M, Zhu PJB (2021) MRWMDA: a novel framework to infer miRNA–disease associations. Biosystems. https://doi.org/10.1016/j.biosystems.2020.104292

    Article  PubMed  Google Scholar 

  33. Xie J, Yin Y, Yang F, Sun J, Wang J (2021) Differential network analysis reveals regulatory patterns in neural stem cell fate decision. Interdiscip Sci Comput Life Sci. https://doi.org/10.21203/rs.2.19445/v1

    Article  Google Scholar 

  34. Singh NK (2017) microRNAs databases: developmental methodologies, structural and functional annotations. Interdiscip Sci Comput Life Sci 9(3):357–377. https://doi.org/10.1007/s12539-016-0166-7

    Article  CAS  Google Scholar 

  35. Qu Y, Zhang HX, Liang C, Dong X (2018) KATZMDA: prediction of miRNA–disease associations based on KATZ Model. IEEE Access 6:3943–3950. https://doi.org/10.1109/Access.2017.2754409

    Article  Google Scholar 

  36. Huang H, Yan J, Nie F, Huang J, Cai W, Saykin AJ, Shen L (2013) A new sparse simplex model for brain anatomical and genetic network analysis. Med Image Comput Comput Assist Interv 16(Pt 2):625–632. https://doi.org/10.1007/978-3-642-40763-5_77

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wong TT (2015) Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recogn 48(9):2839–2846. https://doi.org/10.1016/j.patcog.2015.03.009

    Article  Google Scholar 

  38. Li JQ, Rong ZH, Chen X, Yan GY, You ZH (2017) MCMDA: matrix completion for MiRNA–disease association prediction. Oncotarget 8(13):21187–21199. https://doi.org/10.18632/oncotarget.15061

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen X, Yan CC, Zhang X, You ZH, Deng L, Liu Y, Zhang Y, Dai Q (2016) WBSMDA: within and between score for MiRNA–disease association prediction. Sci Rep 6:21106. https://doi.org/10.1038/srep21106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xuan P, Han K, Guo M, Guo Y, Huang YJPO (2013) Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors. PLoS ONE. https://doi.org/10.1371/journal.pone.0070204

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen X, Yan GYJSR (2014) Semi-supervised learning for potential human microRNA–disease associations inference. Sci Rep. https://doi.org/10.1038/srep05501

    Article  PubMed  PubMed Central  Google Scholar 

  42. Uddin A, Chakraborty S (2018) Role of miRNAs in lung cancer. J Cell Physiol. https://doi.org/10.1002/jcp.26607

    Article  PubMed  Google Scholar 

  43. Claude P, Julien G (2016) Prediction of mirna-disease associations with a vector space model. Sci Rep. https://doi.org/10.1038/srep27036 

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li Y, Qiu CX, Tu J, Geng B, Yang JC, Jiang TZ, Cui QH (2014) HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res 42(D1):D1070–D1074. https://doi.org/10.1093/nar/gkt1023

    Article  CAS  PubMed  Google Scholar 

  45. Yang Z, Wu L, Wang A, Tang W, Zhao Y, Zhao H, Teschendorff AE (2017) dbDEMC 2.0: updated database of differentially expressed miRNAs in human cancers. Nucleic Acids Res 45(D1):D812–D818. https://doi.org/10.1093/nar/gkw1079

    Article  CAS  PubMed  Google Scholar 

  46. Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37:D98–D104. https://doi.org/10.1093/nar/gkn714

    Article  CAS  PubMed  Google Scholar 

  47. Das SS, Saha P, Chakravorty N (2018) miRwayDB: a database for experimentally validated microRNA-pathway associations in pathophysiological conditions. Database Oxf. https://doi.org/10.1093/database/bay023

    Article  Google Scholar 

  48. Ruepp A, Kowarsch A, Schmidl D, Buggenthin F, Brauner B, Dunger I, Fobo G, Frishman G, Montrone C, Theis FJ (2010) PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes. Genome Biol. https://doi.org/10.1186/gb-2010-11-1-r6

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (No. 61672329, 62072290) in part by the Project of the Shandong Provincial Project of Education Scientific Plan (No. SDYY18058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Hong.

Ethics declarations

Conflict of interest

The authors confirm that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ShengPeng, Y., Hong, W. RSCMDA: Prediction of Potential miRNA–Disease Associations Based on a Robust Similarity Constraint Learning Method. Interdiscip Sci Comput Life Sci 13, 559–571 (2021). https://doi.org/10.1007/s12539-021-00459-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-021-00459-y

Keywords

Navigation