Skip to main content

Advertisement

Log in

Hydrogen alleviates cell damage and acute lung injury in sepsis via PINK1/Parkin-mediated mitophagy

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Multiple organ failure (MOF) is the main cause of early death in septic shock. Lungs are among the organs that are affected in MOF, resulting in acute lung injury. Inflammation is an important factor that causes immune cell dysfunction in the pathogenesis of sepsis. Autophagy is involved in the process of inflammation and also occurs in response to cell and tissue injury in several diseases. We previously demonstrated that hydrogen alleviated the inflammation-induced cell injury and organ damage in septic mice.

Aim

The focus of the present study was to elucidate whether mitophagy mediates the inflammatory response or oxidative injury in sepsis in vitro and in vivo. Furthermore, we evaluated the role of mitophagy in the protective effects of hydrogen against cell injury or organ dysfunction in sepsis.

Method

RAW 264.7 macrophages induced by lipopolysaccharide (LPS) were used as an in vitro model for inflammation, and cecal ligation and puncture (CLP)-induced acute lung injury mice were used as an in vivo model for sepsis. The key protein associated with mitophagy, PTEN-induced putative kinase 1 (PINK1), was knocked down by PINK1 shRNA transfection in RAW 264.7 macrophages or mice.

Results

Hydrogen ameliorated cell injury and enhanced mitophagy in macrophages stimulated by LPS. PINK1 was required for the mitigation of the cell impairment in LPS-stimulated macrophages by hydrogen treatment. PINK1 knockdown abrogated the beneficial effects of hydrogen on mitophagy in LPS-stimulated macrophages. Hydrogen inhibited acute lung injury in CLP mice via activation of PINK1-mediated mitophagy.

Conclusion

These results suggest that PINK1-mediated mitophagy plays a key role in the protective effects of hydrogen against cell injury in LPS-induced inflammation and CLP-induced acute lung injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rim TH, Han JS, Oh J, Kim DW, Kang SM, Chung EJ. Retinal vein occlusion and the risk of acute myocardial infarction development: a 12-year nationwide cohort study. Sci Rep. 2016;6:22351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chaudhry H, Zhou J, Zhong Y, Ali MM, McGuire F, Nagarkatti PS, Nagarkatti M. Role of cytokines as a double-edged sword in sepsis. Vivo. 2013;27:669–84.

    CAS  Google Scholar 

  3. Gao R, Ma Z, Hu Y, Chen J, Shetty S, Fu J. Sirt1 restrains lung inflammasome activation in a murine model of sepsis. Am J Physiol Lung Cell Mol Physiol. 2015;308:L847-853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Varisco BM. The pharmacology of acute lung injury in sepsis. Adv Pharmacol Sci. 2011;2011:254619.

    PubMed  PubMed Central  Google Scholar 

  5. Galley HF. Oxidative stress and mitochondrial dysfunction in sepsis. Br J Anaesth. 2011;107:57–64.

    Article  CAS  PubMed  Google Scholar 

  6. Deng Q, Zhao T, Pan B, Dennahy IS, Duan X, Williams AM, Liu B, Lin N, Bhatti UF, Chen E, Alam HB, Li Y. Protective effect of tubastatin A in CLP-induced lethal sepsis. Inflammation. 2018;41:2101–9.

    Article  CAS  PubMed  Google Scholar 

  7. Slavin SA, Leonard A, Grose V, Fazal F, Rahman A. Autophagy inhibitor 3-methyladenine protects against endothelial cell barrier dysfunction in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2018;314:L388-396.

    Article  PubMed  CAS  Google Scholar 

  8. Sun DZ, Song CQ, Xu YM, Wang R, Liu W, Liu Z, Dong XS. Involvement of PINK1/Parkin-mediated mitophagy in paraquat- induced apoptosis in human lung epithelial-like A549 cells. Toxicol In Vitro. 2018;53:148–59.

    Article  CAS  PubMed  Google Scholar 

  9. Sun Y, Yao X, Zhang QJ, Zhu M, Liu ZP, Ci B, Xie Y, Carlson D, Rothermel BA, Sun Y, Levine B, Hill JA, Wolf SE, Minei JP, Zang QS. Beclin-1-dependent autophagy protects the heart during sepsis. Circulation. 2018;138:2247–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aguirre A, Lopez-Alonso I, Gonzalez-Lopez A, Amado-Rodriguez L, Batalla-Solis E, Astudillo A, Blazquez-Prieto J, Fernandez AF, Galvan JA, Dos SC, Albaiceta GM. Defective autophagy impairs ATF3 activity and worsens lung injury during endotoxemia. J Mol Med (Berl). 2014;92:665–76.

    Article  CAS  Google Scholar 

  11. Colell A, Ricci JE, Tait S, Milasta S, Maurer U, Bouchier-Hayes L, Fitzgerald P, Guio-Carrion A, Waterhouse NJ, Li CW, Mari B, Barbry P, Newmeyer DD, Beere HM, Green DR. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell. 2007;129:983–97.

    Article  CAS  PubMed  Google Scholar 

  12. Lo S, Yuan SS, Hsu C, Cheng YJ, Chang YF, Hsueh HW, Lee PH, Hsieh YC. Lc3 over-expression improves survival and attenuates lung injury through increasing autophagosomal clearance in septic mice. Ann Surg. 2013;257:352–63.

    Article  PubMed  Google Scholar 

  13. Mizumura K, Cloonan S, Choi ME, Hashimoto S, Nakahira K, Ryter SW, Choi AM. Autophagy: friend or foe in lung disease? Ann Am Thorac Soc. 2016;13(Suppl 1):S40–7.

    PubMed  PubMed Central  Google Scholar 

  14. Ghavami S, Yeganeh B, Zeki AA, Shojaei S, Kenyon NJ, Ott S, Samali A, Patterson J, Alizadeh J, Moghadam AR, Dixon IMC, Unruh H, Knight DA, Post M, Klonisch T, Halayko AJ. Autophagy and the unfolded protein response promote profibrotic effects of TGF-β in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol. 2018;314:L493-504.

    Article  PubMed  CAS  Google Scholar 

  15. Takaoka Y, Goto S, Nakano T, Tseng HP, Yang SM, Kawamoto S, Ono K, Chen CL. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) prevents lipopolysaccharide (LPS)-induced, sepsis-related severe acute lung injury in mice. Sci Rep. 2014;4:5204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hammerling BC, Gustafsson AB. Mitochondrial quality control in the myocardium: cooperation between protein degradation and mitophagy. J Mol Cell Cardiol. 2014;75:122–30.

    Article  CAS  PubMed  Google Scholar 

  17. Kubli DA, Gustafsson AB. Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res. 2012;111:1208–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 2014;20:460–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. West AP, Shadel GS, Ghosh S. Mitochondria in innate immune responses. Nat Rev Immunol. 2011;11:389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360:219–23.

    Article  CAS  PubMed  Google Scholar 

  21. Carre JE, Orban JC, Re L, Felsmann K, Iffert W, Bauer M, Suliman HB, Piantadosi CA, Mayhew TM, Breen P, Stotz M, Singer M. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med. 2010;182:745–51.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010;8:e1000298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Chen HR, Chuang YC, Chao CH, Yeh TM. Macrophage migration inhibitory factor induces vascular leakage via autophagy. Biol Open. 2015;4:244–52.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen H, Xie K, Han H, Li Y, Liu L, Yang T, Yu Y. Molecular hydrogen protects mice against polymicrobial sepsis by ameliorating endothelial dysfunction via an Nrf2/HO-1 signaling pathway. Int Immunopharmacol. 2015;28:643–54.

    Article  CAS  PubMed  Google Scholar 

  25. Xie K, Yu Y, Pei Y, Hou L, Chen S, Xiong L, Wang G. Protective effects of hydrogen gas on murine polymicrobial sepsis via reducing oxidative stress and HMGB1 release. Shock. 2010;34:90–7.

    Article  CAS  PubMed  Google Scholar 

  26. Xie K, Yu Y, Zhang Z, Liu W, Pei Y, Xiong L, Hou L, Wang G. Hydrogen gas improves survival rate and organ damage in zymosan-induced generalized inflammation model. Shock. 2010;34:495–501.

    Article  CAS  PubMed  Google Scholar 

  27. Dong A, Yu Y, Wang Y, Li C, Chen H, Bian Y, Zhang P, Zhao Y, Yu Y, Xie K. Protective effects of hydrogen gas against sepsis-induced acute lung injury via regulation of mitochondrial function and dynamics. Int Immunopharmacol. 2018;65:366–72.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang X, Yuan D, Sun Q, Xu L, Lee E, Lewis AJ, Zuckerbraun BS, Rosengart MR. Calcium/calmodulin-dependent protein kinase regulates the PINK1/Parkin and DJ-1 pathways of mitophagy during sepsis. FASEB J. 2017;31:4382–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen H, Hu Y, Xie K, Chen Y, Wang H, Bian Y, Wang Y, Dong A, Yu Y. Effect of autophagy on allodynia, hyperalgesia and astrocyte activation in a rat model of neuropathic pain. Int J Mol Med. 2018;42:2009–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hayashida K, Sano M, Ohsawa I, Shinmura K, Tamaki K, Kimura K, Endo J, Katayama T, Kawamura A, Kohsaka S, Makino S, Ohta S, Ogawa S, Fukuda K. Inhalation of hydrogen gas reduces infarct size in therat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun. 2008;373(1):30–5. https://doi.org/10.1016/j.bbrc.2008.05.165.

    Article  CAS  PubMed  Google Scholar 

  31. Qiu BY, Turner N, Li YY, Gu M, Huang MW, Wu F, Pang T, Nan FJ, Ye JM, Li JY, Li J. High-throughput assay for modulators of mitochondrial membrane potential identifies a novel compound with beneficial effects on db/db mice. Diabetes. 2010;59:256–65.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao C, Chen Z, Xu X, An X, Duan S, Huang Z, Zhang C, Wu L, Zhang B, Zhang A, Xing C, Yuan Y. Pink1/Parkin-mediated mitophagy play a protective role in cisplatin induced renal tubular epithelial cells injury. Exp Cell Res. 2017;350:390–7.

    Article  CAS  PubMed  Google Scholar 

  33. Kang R, Zeng L, Xie Y, Yan Z, Zhou B, Cao L, Klionsky DJ, Tracey KJ, Li J, Wang H, Billiar TR, Jiang J, Tang D. A novel PINK1- and PARK2-dependent protective neuroimmune pathway in lethal sepsis. Autophagy. 2016;12:2374–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lewis AJ, Billiar TR, Rosengart MR. Biology and metabolism of sepsis: innate immunity, bioenergetics, and autophagy. Surg Infect (Larchmt). 2016;17:286–93.

    Article  Google Scholar 

  35. Li S, Wu H, Han D, Ma S, Fan W, Wang Y, Zhang R, Fan M, Huang Y, Fu X, Cao F. A novel mechanism of mesenchymal stromal cell-mediated protection against sepsis: restricting inflammasome activation in macrophages by increasing mitophagy and decreasing mitochondrial ROS. Oxid Med Cell Longev. 2018;2018:3537609.

    PubMed  PubMed Central  Google Scholar 

  36. Chen HG, Xie KL, Han HZ, Wang WN, Liu DQ, Wang GL, Yu YH. Heme oxygenase-1 mediates the anti-inflammatory effect of molecular hydrogen in LPS-stimulated RAW 264.7 macrophages. Int J Surg. 2013;11:1060–6.

    Article  PubMed  Google Scholar 

  37. Xie K, Fu W, Xing W, Li A, Chen H, Han H, Yu Y, Wang G. Combination therapy with molecular hydrogen and hyperoxia in a murine model of polymicrobial sepsis. Shock. 2012;38:656–63.

    Article  CAS  PubMed  Google Scholar 

  38. Epelman S, Lavine KJ, Randolph GJ. Origin and functions of tissue macrophages. Immunity. 2014;41:21–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gordon S, Pluddemann A. Tissue macrophages: heterogeneity and functions. BMC Biol. 2017;15:53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Luan YY, Dong N, Xie M, Xiao XZ, Yao YM. The significance and regulatory mechanisms of innate immune cells in the development of sepsis. J Interferon Cytokine Res. 2014;34:2–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hamidzadeh K, Christensen SM, Dalby E, Chandrasekaran P, Mosser DM. Macrophages and the recovery from acute and chronic inflammation. Annu Rev Physiol. 2017;79:567–92.

    Article  CAS  PubMed  Google Scholar 

  42. Lauvau G, Loke P, Hohl TM. Monocyte-mediated defense against bacteria, fungi, and parasites. Semin Immunol. 2015;27:397–409.

    Article  CAS  PubMed  Google Scholar 

  43. Wang TS, Deng JC. Molecular and cellular aspects of sepsis-induced immunosuppression. J Mol Med (Berl). 2008;86:495–506.

    Article  CAS  Google Scholar 

  44. Winkler MS, Rissiek A, Priefler M, Schwedhelm E, Robbe L, Bauer A, Zahrte C, Zoellner C, Kluge S, Nierhaus A. Human leucocyte antigen (HLA-DR) gene expression is reduced in sepsis and correlates with impaired TNFalpha response: a diagnostic tool for immunosuppression? PLoS ONE. 2017;12:e0182427.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Qiu P, Liu Y, Zhang J. Review: the role and mechanisms of macrophage autophagy in sepsis. Inflammation. 2018;42:6–19.

    Article  CAS  Google Scholar 

  46. Deretic V, Kimura T, Timmins G, Moseley P, Chauhan S, Mandell M. Immunologic manifestations of autophagy. J Clin Invest. 2015;125:75–84.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hsieh CH, Pai PY, Hsueh HW, Yuan SS, Hsieh YC. Complete induction of autophagy is essential for cardioprotection in sepsis. Ann Surg. 2011;253:1190–200.

    Article  PubMed  Google Scholar 

  48. Li F, Lang F, Zhang H, Xu L, Wang Y, Hao E. Role of TFEB mediated autophagy, oxidative stress, inflammation, and cell death in endotoxin induced myocardial toxicity of young and aged mice. Oxid Med Cell Longev. 2016;2016:5380319.

    PubMed  PubMed Central  Google Scholar 

  49. Ren J, Xu X, Wang Q, Ren SY, Dong M, Zhang Y. Permissive role of AMPK and autophagy in adiponectin deficiency-accentuated myocardial injury and inflammation in endotoxemia. J Mol Cell Cardiol. 2016;93:18–31.

    Article  CAS  PubMed  Google Scholar 

  50. Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron. 2015;85:257–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nardin A, Schrepfer E, Ziviani E. Counteracting PINK/Parkin deficiency in the activation of mitophagy: a potential therapeutic intervention for Parkinson’s disease. Curr Neuropharmacol. 2016;14:250–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barodia SK, Creed RB, Goldberg MS. Parkin and PINK1 functions in oxidative stress and neurodegeneration. Brain Res Bull. 2017;133:51–9.

    Article  CAS  PubMed  Google Scholar 

  53. Mannam P, Shinn AS, Srivastava A, Neamu RF, Walker WE, Bohanon M, Merkel J, Kang MJ, Dela CC, Ahasic AM, Pisani MA, Trentalange M, West AP, Shadel GS, Elias JA, Lee PJ. MKK3 regulates mitochondrial biogenesis and mitophagy in sepsis-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 2014;306:L604–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang Y, Sauler M, Shinn AS, Gong H, Haslip M, Shan P, Mannam P, Lee PJ. Endothelial PINK1 mediates the protective effects of NLRP3 deficiency during lethal oxidant injury. J Immunol. 2014;192:5296–304.

    Article  CAS  PubMed  Google Scholar 

  55. Sliter DA, Martinez J, Hao L, Chen X, Sun N, Fischer TD, Burman JL, Li Y, Zhang Z, Narendra DP, Cai H, Borsche M, Klein C, Youle RJ. Parkin and PINK1 mitigate STING-induced inflammation. Nature. 2018;561:258–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Whitworth AJ, Pallanck LJ. The PINK1/Parkin pathway: a mitochondrial quality control system? J Bioenerg Biomembr. 2009;41:499–503.

    Article  CAS  PubMed  Google Scholar 

  57. Du F, Yu Q, Yan S, Hu G, Lue LF, Walker DG, Wu L, Yan SF, Tieu K, Yan SS. PINK1 signalling rescues amyloid pathology and mitochondrial dysfunction in Alzheimer’s disease. Brain. 2017;140:3233–51.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yunfu W, Guangjian L, Ping Z, Yanpeng S, Xiaoxia F, Wei H, Jiang Y, Jingquan H, Songlin W, Hongyan Z, Yong L, Shi C. PINK1 and its familial Parkinson’s disease-associated mutation regulate brain vascular endothelial inflammation. J Mol Neurosci. 2014;53:109–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported in part by National Natural Science Foundation of China (Nos. 81601667 to Hongguang Chen, 81671888 to Yonghao Yu, 81772043 to Xie Keliang, 81971879) Beijing, China; Natural Science Foundation of Tianjin (Nos. 18JCYBJC93700 to Hongguang Chen).

Author information

Authors and Affiliations

Authors

Contributions

YY and KX designed the research and draft the manuscript; HC performed the animal research; BD cultures cell and collected sample in vitro; HL and YW carried out the detection of indicators. HL revised the manuscript after major revision. YY performed the results statistic. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yonghao Yu or Keliang Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

All experimental procedures were approved by the Institutional Animal Care and Use Committee of Tianjin Medical University and were performed in accordance with the National Institutes of Health Guide for Care and Use of Laboratory Animals. All efforts were made to minimize animal suffering and the number of animals used.

Additional information

Responsible Editor: Anatoliy Kubyshkin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 34167 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Lin, H., Dong, B. et al. Hydrogen alleviates cell damage and acute lung injury in sepsis via PINK1/Parkin-mediated mitophagy. Inflamm. Res. 70, 915–930 (2021). https://doi.org/10.1007/s00011-021-01481-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-021-01481-y

Keywords

Navigation