Skip to main content
Log in

New optical solitons for complex Ginzburg–Landau equation with beta derivatives via two integration algorithms

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper explores the optical solitons with Kerr laws nonlinearity for the complex Ginzburg–Landau equation with M-truncated and beta derivatives which describes solitons propagation. In this regard, two new methods, namely extended sub-equation and unified solver method, are used. From general, hyperbolic, and trigonometric functions, we obtain novel and general solitary solutions. All obtained solutions can be useful for a variety of important experiments in nuclear physics, fluid mechanics, and particle physics. Our results show the strength of the proposed technique for the determination of optical solitons of nonlinear evolution equations. The proposed methods can be applied for solving other fractional space–time NLEs arising in nonlinear optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K Diethelm, The Analysis of Fractional Differential Equations (Berlin: Springer) (2010).

  2. K S Miller and B Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (New York: Wiley) (1993).

  3. I Podlubny, Fractional Differential Equations (San Diego, CA: Academic Press) (1999).

  4. K B Oldham and J Spanier, The Fractional Calculus (San Diego, CA: Academic Press) (1974).

  5. M A Akbar, et al., Results in Physics 25 104228 (2021).

  6. A M A El-Sayed and M Gaber, Phys.Lett. A. 359 175 (2006).

  7. M Mirzazadeh, M Eslami and A Biswas Optik. 125 6874 (2014).

  8. A Das, et al.,Chinese J. Phys. 61 255 (2019).

  9. Y Yildirim, et al., Results in Physics. 16 102888 (2020).

  10. S Arshed, A Biswas, F. Mallawi and M.R. Belic, Phys. Letters A. 383 126026 (2019)

  11. M Inc and B Kilic Journal of Electromagnetic Waves and Applications 30 871 (2016).

  12. M Inc, E Ates and F Tchier Nonlinear Dynamics 85 1319 (2016).

  13. M Inc and B Kilic, Waves in Random and Complex Media 27 1 (2017).

  14. F Tchier, E C Aslan and M Inc Nonlinear Dynamics 85 2577 (2016).

  15. L Akinyemi, et al., Results in Physics 25 104177 (2021).

  16. E Tala-Tebeu, etal., Results in Physics 19 103514 (2020).

  17. M Inc et al Math. Meth. Appl. Sci. 42 2455 (2019).

    Article  MathSciNet  Google Scholar 

  18. B Nawaz, S T R Rizvi, K Ali and M Younis, Opt. Quant. Electronics. 50 204 (2018).

  19. A Yusuf, M Inc and D Baleanu Frontiers Phys. 7 34 (2019).

  20. H I Abdel-Gawad et al Mod. Phys. Letters b. 32 1850353 (2018).

  21. B Ghanbari, A Yusuf, M Inc and D Baleanu, Adv. Diff. Equation. 2019 49 (2019).

  22. M Eslami and A Neirameh, Optical and Quant. Electronics. 50 47 (2018).

  23. M Eslami and M Mirzazadeh Nonlinear Dynamics. 83 731 (2016).

  24. M Eslami and H Rezazadeh Calcolo. 53 475 (2016).

  25. F S Khodadad, F Nazari, M Eslami and H Rezazadeh, Optical and Quant. Electronics. 49 384 (2017).

  26. M Eslami and M Mirzazadeh Ocean Engineering. 83 133 (2014).

  27. O Iyiola, B Odura and L Akinyemi, Chaos, Solitons and Fractals 145 110797 (2021).

  28. M Ekici, M Mirzazadeh and M Eslami Nonlinear Dynamics. 84 669 (2016).

  29. L Akinyemi, M Senol and O S Iyiola, Math. Comput. Simulations 182 211 (2021).

  30. H Rezazadeh, et al., Optical and Quant. Electronics. 50 150 (2018).

  31. Q Zhou et al Nonlinear Dynamics. 84 1883 (2016).

  32. M Eslami Nonlinear Dynamics. 85 813 (2016).

  33. M Mirzazadeh et al Nonlinear Dynamics. 81 1933 (2015).

  34. A Neirameh and M Eslami, Sci. Iran. 24 715 (2017).

  35. A Neirameh and M Eslami Afrika Matematika. 30 335 (2019).

  36. M Mirzazadeh, M Eslami and A Biswas Comput. Appl. Math. 33 831 (2014).

  37. M Eslami, Iran. J. Sci. Technol. Trans. A. 41 1027 (2017).

  38. M Eslami, H Rezazadeh, M Rezazadeh and S S Mosavi, Optical and Quant. Electronics. 49 279 (2017).

  39. M Inc, A I Aliyu, A Yusuf and D Baleanu, Physica A 493 94 (2018).

  40. K B Oldham and J Spanier, The Fractional Calculus (New York, NY: Academic Press) (1974).

  41. J Singh, D Kumar, M Al-Qurashi and D Baleanu, Adv. Differ.Equ. 2017 88 (2017).

  42. M Caputo and F Mainardi, Pure Appl. Geo. Phys. 91 134 (1971).

  43. E Bas, B Acay and R Ozarslan, Chaos. 29 023110 (2019).

  44. A Atangana and D Baleanu Thermal Science. 20 763 (2016).

  45. A Atangana and A Secer, Abstr. Appl. Anal. 2013 279681 (2013).

  46. R Khalil, et al., J.Comput. Appl. Math. 264 65 (2014).

  47. B Acay, E Bas and T Abdeljawad, J.Comput. Appl. Math. 366 112410 (2019).

  48. J V D C Sousa and E C Oliveira, Int. J. Anal. Appl. 16 83 (2018).

  49. A C Scott, Encyclopedia of Nonlinear Science (New York, NY: Routledge, Taylor and Francis Group) (2005).

  50. M Mirzazadeh et al Nonlinear Dynamics. 85 1979 (2016).

  51. S Shwetanshumala, Prog. Electromagn. Res. Lett. 96 1 (2009).

  52. M A E Abdelrahman and H AlKhidhr, Physica Scripta 95 065212 (2020).

  53. H G Abdelwahed, E K El-Shewy and M A E Abdelrahman, Phys. Scripta 95 105204 (2020).

  54. S Zhang and H Q Zhang Physics Letters A 375 1069 (2011).

  55. M A E Abdelrahman and H A Alkhidhr, Results in Physics 18 103294 (2020).

  56. H G Abdelwahed and M A E Abdelrahman, Results in Physics 19 103393 (2020).

  57. H G Abdelwahed, J. Taibah University Science 14 777 (2020).

  58. H G Abdelwahed, E K El-Shewy, M A E Abdelrahman and A F Alsarhana, Results in Physics 21 103798 (2021).

  59. M K Sharaf, E K El-Shewy and M A Zahran, J. Taibah University Science 14 1416 (2020).

  60. H Rezazadeh, R Abazari, M M A Khater, M Inc and D Baleanu Open Physics 18 761 (2020).

  61. P Veeresha, D G Prakasha, D Kumar, D Baleanu and J Singh, J. Comp. Nonlinear Dynamics 15 071003 (2020).

  62. J Singh, D Kumar, S D Purohit, A M Mishra and M Bohra Numerical Methods for Partial Differential Equations 37(2) 1631 (2021).

  63. P Veeresha, D G Prakasha, J Singh, D Kumar and D Baleanu Chinese Journal of Physics 68 65 (2020).

  64. H Rezazadeh, M Inc and D Baleanu Frontiers in Physics 8 332 (2020).

  65. M M Matar, M I Abbas, J Alzabut, M K A Kaabar, S Etemad and Sh Rezapour, Advances in Difference Equations 2021(1) 1 (2021).

  66. F Martínez, I Martínez, M K A Kaabar and S Paredes, AIMS Mathematics 5(6) 7695 (2020).

  67. F Martínez, I Martínez, M K A Kaabar and S Paredes, Journal of Mathematics 2021 (2021).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Inc.

Ethics declarations

Conflict of interest

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. The authors do not have any conflict of interest in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouahid, L., Abdou, M.A., Owyed, S. et al. New optical solitons for complex Ginzburg–Landau equation with beta derivatives via two integration algorithms. Indian J Phys 96, 2093–2105 (2022). https://doi.org/10.1007/s12648-021-02168-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02168-0

Keywords

Navigation