Skip to main content
Log in

Kurdyka–Łojasiewicz Exponent via Inf-projection

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Kurdyka–Łojasiewicz (KL) exponent plays an important role in estimating the convergence rate of many contemporary first-order methods. In particular, a KL exponent of \(\frac{1}{2}\) for a suitable potential function is related to local linear convergence. Nevertheless, KL exponent is in general extremely hard to estimate. In this paper, we show under mild assumptions that KL exponent is preserved via inf-projection. Inf-projection is a fundamental operation that is ubiquitous when reformulating optimization problems via the lift-and-project approach. By studying its operation on KL exponent, we show that the KL exponent is \(\frac{1}{2}\) for several important convex optimization models, including some semidefinite-programming-representable functions and some functions that involve \(C^2\)-cone reducible structures, under conditions such as strict complementarity. Our results are applicable to concrete optimization models such as group-fused Lasso and overlapping group Lasso. In addition, for nonconvex models, we show that the KL exponent of many difference-of-convex functions can be derived from that of their natural majorant functions, and the KL exponent of the Bregman envelope of a function is the same as that of the function itself. Finally, we estimate the KL exponent of the sum of the least squares function and the indicator function of the set of matrices of rank at most k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See Definition 2.1 for the precise definition.

  2. This type of first-order error bound is sometimes called the Luo–Tseng error bound; see [34, 58].

  3. We refer the readers to Sect. 2 for relevant definitions.

  4. Here, f is a proper closed function, thanks to Lemma 2.1(i).

  5. A gauge is a nonnegative positively homogeneous convex function that vanishes at the origin.

  6. See [28, Proposition 2.1(iii)].

  7. Notice that F is proper and closed thanks to the existence of the Slater point \((x^s,u^s,t^s)\).

  8. Note that \(F_1\) is proper and closed thanks to the existence of the Slater point \((x^s,u^s,t^s)\).

  9. Here and henceforth, \(U({\bar{x}},{\bar{u}},f({\bar{x}}))\) is a short-hand notation for the matrix vector product \(U\begin{bmatrix} {\bar{x}}\\ {\bar{u}}\\ f({\bar{x}}) \end{bmatrix}\).

  10. Note that this condition implies that both F in (3.7) and \(F_1\) in (4.2) are proper and closed.

  11. In the case when \(\ker \mathcal {{\bar{A}}}=\{0\}\) so that the basis is empty (i.e., \(r = 0\)), we define \(\mathcal{H}\) to be the unique linear map that maps \(\mathcal{S}^d\) onto the zero vector space.

  12. Recall that \(p\ge 0\). When \(p=0\), we interpret \({\bar{z}}\) as a null vector so that \(U({\bar{x}},{\bar{u}},f({\bar{x}})) = f({\bar{x}})\).

  13. In the case when \(\ker \bar{\mathcal{A}} = \{0\}\) (i.e., \(r = 0\)), we have \({\tilde{Y}}+{\Vert {\hat{A}}_0\Vert _F^{-2}}{\hat{A}}_0 = 0\). In this case, we interpret \(\omega \) as a null vector.

  14. We note that because of the Slater’s condition, the function F in (3.7) is proper and closed.

  15. When \(r=0\), we set \({\bar{Z}} = 0\in \mathcal{S}^{m+n}\).

  16. When \(r = 0\), this set is \(\{(0,0)\}\) and \({\bar{Z}} = 0\).

  17. The quoted result is for \(C^1\)-cone reducibility. However, it is apparent from the proof how to adapt the result for \(C^2\)-cone reducibility.

References

  1. M. Ahn, J. S. Pang and J. Xin, Difference-of-convex learning: directional stationarity, optimality, and sparsity, SIAM J. Optim. 27 (2017), 1637–1665.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. M. Alaíz, Á. Barbero J. R. Dorronsoro, Group fused lasso, in Artificial Neural Networks and Machine Learning–ICANN 2013. Lecture Notes in Computer Science, vol 8131. (V. Mladenov, P. Koprinkova-Hristova, G. Palm, A. E. P. Villa, B. Appollini, N. Kasabov, eds) Springer, Berlin, Heidelberg, (2013), pp. 66–73.

  3. F. J. Aragón Artacho and M. H. Geoffroy, Characterization of metric regularity of subdifferentials, J. Convex Anal. 15 (2008), 365–380.

    MathSciNet  MATH  Google Scholar 

  4. H. Attouch and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic features, Math. Program. 116 (2009), 5–16.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Attouch, J. Bolte, P. Redont and A. Soubeyran, Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality, Math. Oper. Res. 35 (2010), 438–457.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Attouch, J. Bolte and B. F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods, Math. Program. 137 (2013), 91–129.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Auslender and M. Teboulle, Asymptotic Cones and Functions in Optimization and Variational Inequalities, Springer, 2003.

  8. H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Review 38 (1996), 367–426.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. H. Bauschke, J. M. Borwein and W. Li, Strong conical hull intersection property, bounded linear regularity, Jameson’s property (G), and error bounds in convex optimization, Math. Program. 86 (1999), 135–160.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. H. Bauschke, P. L. Combettes and D. Noll, Joint minimization with alternating Bregman proximity operators, Pac. J. Optim. 2 (2006), 401–424.

    MathSciNet  MATH  Google Scholar 

  11. A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, MPS-SIAM Series on Optimization, (2001).

  12. J. Bolte, A. Daniilidis and A. Lewis, The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems, SIAM J. Optim. 17 (2007), 1205–1223.

    Article  MATH  Google Scholar 

  13. J. Bolte, A. Daniilidis, A. Lewis and M. Shiota, Clarke subgradients of stratifiable functions, SIAM J. Optim. 18 (2007), 556–572.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Bolte, T. P. Nguyen, J. Peypouquet and B. W. Suter, From error bounds to the complexity of first-order descent methods for convex functions, Math. Program. 165 (2017), 471–507.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Bolte, S. Sabach and M. Teboulle, Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Math. Program. 146 (2014), 459–494.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Borwein and A. Lewis, Convex Analysis and Nonlinear Optimization, 2nd edition, Springer, 2006.

  17. S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trend. in Mach. Learn. 3 (2010), 1–122.

    Article  MATH  Google Scholar 

  18. Y. Cui, C. Ding and X. Zhao, Quadratic growth conditions for convex matrix optimization problems associated with spectral functions, SIAM J. Optim. 27 (2017), 2332–2355.

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Cui, D. F. Sun and K. C. Toh, On the asymptotic superlinear convergence of the augmented Lagrangian method for semidefinite programming with multiple solutions, Preprint (2016). Available at https://arxiv.org/abs/1610.00875.

  20. D. D’Acunto and K. Kurdyka, Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials, Ann. Polon. Math. 87 (2005), 51–61.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings, Springer, New York, 2009.

    Book  MATH  Google Scholar 

  22. D. Drusvyatskiy, A. D. Ioffe and A. S. Lewis, Nonsmooth optimization using Taylor-like models: error bounds, convergence, and termination criteria, Math. Program. 185 (2021), 357-383.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Drusvyatskiy and A. Lewis, Error bounds, quadratic growth, and linear convergence of proximal methods, Math. Oper. Res. 43 (2018), 919–948.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Drusvyatskiy, G. Li and H. Wolkowicz, A note on alternating projections for ill-posed semidefinite feasibility problems, Math. Program. 162 (2017), 537–548.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Fan, Comments on “wavelets in statistics: a review” by A. Antoniadis, J. Ital. Stat. Soc. 6 (1997), 131–138.

  26. F. Fachinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer, New York, 2003.

    Google Scholar 

  27. P. Frankel, G. Garrigos and J. Peypouquet, Splitting methods with variable metric for Kurdyka-Łojasiewicz functions and general convergence rates, J. Optim. Theory Appl. 165 (2015), 874–900.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. P. Friedlander, I. Macêdo and T. K. Pong, Gauge optimization and duality, SIAM J. Optim. 24 (2014), 1999–2022.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. W. Helton and J. Nie, Semidefinite representation of convex sets, Math. Program. 122 (2010), 21–64.

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Jiang and D. Li, Novel reformulations and efficient algorithms for the generalized trust region subproblem, SIAM J. Optim. 29 (2019), 1603–1633.

    Article  MathSciNet  MATH  Google Scholar 

  31. K. Kurdyka, On gradients of functions definable in o-minimal structures, Ann. Inst. Fourier 48 (1998) 769–783.

    Article  MathSciNet  MATH  Google Scholar 

  32. G. Li, B. S. Mordukhovich and T. S. Pham, New fractional error bounds for polynomial systems with applications to Hölderian stability in optimization and spectral theory of tensors, Math. Program. 153 (2015), 333–362.

    Article  MathSciNet  MATH  Google Scholar 

  33. G. Li and T. K. Pong, Douglas-Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems, Math. Program. 159 (2016), 371–401.

    Article  MathSciNet  MATH  Google Scholar 

  34. G. Li and T. K. Pong, Calculus of the exponent of Kurdyka-Łojasiewicz inequality and its applications to linear convergence of first-order methods, Found. Comput. Math. 18 (2018), 1199–1232.

    Article  MathSciNet  MATH  Google Scholar 

  35. T. Liu and T. K. Pong, Further properties of the forward-backward envelope with applications to difference-of-convex programming, Comput. Optim. Appl. 67 (2017), 489–520.

    Article  MathSciNet  MATH  Google Scholar 

  36. T. Liu, T. K. Pong and A. Takeda, A refined convergence analysis of pDCA\(_e\) with applications to simultaneous sparse recovery and outlier detection, Comput. Optim. Appl. 73 (2019), 69–100.

    Article  MathSciNet  MATH  Google Scholar 

  37. H. Liu, W. Wu and A. M.-C. So, Quadratic optimization with orthogonality constraints: explicit Łojasiewicz exponent and linear convergence of line-search methods, ICML, (2016), pp. 1158–1167.

  38. S. Łojasiewicz, Une propriété topologique des sous-ensembles analytiques réels, in Les Équations aux Dérivées Partielles, Éditions du Centre National de la Recherche Scientifique, Paris, 1963, pp. 87–89.

    Google Scholar 

  39. B. F. Lourenço, M. Muramatsu and T. Tsuchiya, Facial reduction and partial polyhedrality, SIAM J. Optim. 28 (2018), 2304–2326.

    Article  MathSciNet  MATH  Google Scholar 

  40. Z. Q. Luo, J. S. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints, Cambridge University Press, Cambridge, 1996.

    Book  MATH  Google Scholar 

  41. Z. Q. Luo and P. Tseng, Error bounds and convergence analysis of feasible descent methods: a general approach, Ann. Oper. Res. 46 (1993), 157–178.

    Article  MathSciNet  MATH  Google Scholar 

  42. N. Parikh and S. P. Boyd, Proximal algorithms, Found. Trends Optimiz. 1 (2013), 123–231.

    Google Scholar 

  43. G. Pataki, The geometry of semidefinite programming, in Handbook of semidefinite programming (H. Wolkowicz, R. Saigal, and L. Vandenberghe, eds.), Kluwer Acad. Publ., Boston, MA, (2000), pp. 29–65.

  44. B. Recht, M. Fazel and P. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Review 52 (2010), 471–501.

    Article  MathSciNet  MATH  Google Scholar 

  45. R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.

  46. R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, 1998.

  47. A. Shapiro, Sensitivity analysis of generalized equations, J. Math. Sci. 115 (2003), 2554–2565.

    Article  MathSciNet  MATH  Google Scholar 

  48. A. Shapiro and K. Scheinberg, Duality and optimality conditions, in Handbook of semidefinite programming, Kluwer Acad. Publ., Boston, MA, 2000, pp. 67–110.

    Book  MATH  Google Scholar 

  49. L. Stella, A. Themelis and P. Patrinos, Forward-backward quasi-Newton methods for nonsmooth optimization problems, Comput. Optim. Appl. 67 (2017), 443–487.

    Article  MathSciNet  MATH  Google Scholar 

  50. J. F. Sturm, Error bounds for linear matrix inequalities, SIAM J. Optim. 10 (2000), 1228–1248.

    Article  MathSciNet  MATH  Google Scholar 

  51. H. Tuy, Convex Analysis and Global Optimization, Springer, 2nd edition, (2016).

  52. L. Tunçel and H. Wolkowicz, Strong duality and minimal representations for cone optimization, Comput. Optim. Appl. 53 (2012), 619–648.

    Article  MathSciNet  MATH  Google Scholar 

  53. P. Tseng and S. Yun, A coordinate gradient descent method for nonsmooth separable minimization, Math. Program. 117 (2009), 387–423.

    Article  MathSciNet  MATH  Google Scholar 

  54. M. Udell, C. Horn, R. Zadeh and S. Boyd, Generalized low rank models, Found. Trends in Mach. Learn. 9 (2016), 1–118.

    Article  MATH  Google Scholar 

  55. A. Watson, Characterization of the subdifferential of some matrix norms, Linear Algebra Appl. 170 (1992), 33–45.

    Article  MathSciNet  MATH  Google Scholar 

  56. B. Wen, X. Chen and T. K. Pong, A proximal difference-of-convex algorithm with extrapolation, Comput. Optim. Appl. 69 (2018), 297–324.

    Article  MathSciNet  MATH  Google Scholar 

  57. P. Yin, Y. Lou, Q. He and J. Xin, Minimization of \(\ell _{1-2}\) for compressed sensing, SIAM J. Sci. Comput. 37 (2015), A536–A563.

    Article  MathSciNet  MATH  Google Scholar 

  58. M. Yue, Z. Zhou and A. M.-C. So, A family of inexact SQA methods for non-smooth convex minimization with provable convergence guarantees based on the Luo-Tseng error bound property, Math. Program. 174 (2019), 327–358.

    Article  MathSciNet  MATH  Google Scholar 

  59. C.-H. Zhang, Nearly unbiased variable selection under minimax concave penalty, Ann. Stat. 38 (2010), 894–942.

    Article  MathSciNet  MATH  Google Scholar 

  60. Z. Zhou and A. M.-C. So, A unified approach to error bounds for structured convex optimization problems, Math. Program. 165 (2017), 689–728.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Kei Pong.

Additional information

Communicated by James Renegar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guoyin Li: This author is partially supported by a Future fellowship from Australian Research Council (FT130100038) and a discovery project from Australian Research Council (DP190100555).

Ting Kei Pong: This author was supported partly by Hong Kong Research Grants Council PolyU153005/17p.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, P., Li, G. & Pong, T.K. Kurdyka–Łojasiewicz Exponent via Inf-projection. Found Comput Math 22, 1171–1217 (2022). https://doi.org/10.1007/s10208-021-09528-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-021-09528-6

Keywords

Mathematics Subject Classification

Navigation