Skip to main content
Log in

Discussion on Exact Solution of Dirac Equation with Generalized Exponential Potential in the Presence of Generalized Uncertainty Principle

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In this work, the relativistic particle with the action of the generalized exponential potential is studied in the Dirac equation in the context of minimum length, subsequently finding a suitable variable substitution and giving its wave function and explicit energy spectrum by using the Bethe ansatz method. Further, we will see that this research could be further extended to various special exponential potential, and the explicit energy spectrum and wave functions of various special exponential potential could be reproduced by selecting and adjusting the potential parameters. By observing the expressions of the exact solution of the generalized exponential potential, it can be found that for finite \(\beta \), its energy spectrum is not only related to the principal quantum number n, but also related to the square of n. Moreover, we will also see that this paper not only extends the study of Dirac equation with generalized exponential potential effect to the background of minimal length, but also provides an easier, alternative and valid method for solving the Dirac equation with exponential-type potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.A.M. Dirac, Proc. R. Soc. A 117, 610 (1928)

    ADS  Google Scholar 

  2. P.A.M. Dirac, Proc. R. Soc. A 126, 360 (1930)

    ADS  Google Scholar 

  3. P.A.M. Dirac, The Principles of Quantum Mechanics (Oxford University Press, London, 1966)

    Google Scholar 

  4. J.J. Peña, J. Morales, J. García-Ravelo, J. Math. Phys. 58, 043501 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Capozziello, G. Lambiase, G. Scarpetta, Int. J. Theor. Phys. 39, 15 (2000)

    Article  Google Scholar 

  6. C.P. Burgess, Living Rev. Rel. 7, 5 (2004)

    Article  Google Scholar 

  7. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Phys. Rep. 513, 1 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Ara, M. Moniruzzaman, S.B. Faruque, Phys. Scr. 82, 035005 (2010)

    Article  ADS  Google Scholar 

  9. L.J. Garay, Int. J. Mod. Phys. A 10, 145 (1995)

    Article  ADS  Google Scholar 

  10. J.B. Jimenez, L. Heisenberg, G.J. Olmo, D. Rubiera-Garcia, Phys. Rep. 727, 1 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Hossenfelder, Living Rev. Rel. 16, 2 (2013)

    Article  Google Scholar 

  13. D. Amati, M. Ciafaloni, G. Veneziano, Phys. Lett. B 216, 41 (1989)

    Article  ADS  Google Scholar 

  14. D. Amati, M. Ciafaloni, G. Veneziano, Nucl. Phys. B 403, 707 (1993)

    Article  ADS  Google Scholar 

  15. D.J. Gross, P.F. Mende, Phys. Lett. B 197, 129 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  16. S. Benczik et al., Phys. Rev. D 66, 026003 (2002)

    Article  ADS  Google Scholar 

  17. D. Amati, M. Ciafaloni, G. Veneziano, Phys. Lett. B 197, 81 (1987)

    Article  ADS  Google Scholar 

  18. M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory (Cambridge University Press, Cambridge, 1987)

    MATH  Google Scholar 

  19. M.I. Park, Phys. Lett. B 659, 698 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Gangopadhyaya, D. Abhijit et al., EPL 112, 20006 (2015)

    Article  ADS  Google Scholar 

  21. J. Magueijo, L. Smolin, Phys. Rev. Lett. 88, 190403 (2002)

    Article  ADS  Google Scholar 

  22. J. Magueijo, L. Smolin, Phys. Rev. D 71, 026010 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  23. J.L. Cortes, J. Gamboa, Phys. Rev. D 71, 065015 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  24. W.S. Chung, H. Hassanabadi, Phys. Lett. B 785, 127 (2018)

    Article  ADS  Google Scholar 

  25. A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108 (1994)

    Article  ADS  Google Scholar 

  26. Y. Chargui, A. Trabelsi, L. Chetouani, Phys. Lett. A 374, 531 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  27. T.K. Jana, P. Roy, Phys. Lett. A 373, 1239 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. H. Shababi, W.S. Chung, Phys. Lett. B 770, 445 (2017)

    Article  ADS  Google Scholar 

  29. J.Y. Bang, M.S. Berger, Phys. Rev. D 74, 125012 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  30. A.F. Ali, S. Das, E.C. Vagenas, Phys. Lett. B 678, 497 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  31. M.V. Battisti, G. Montani et al., Phys. Rev. D 77, 023518 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  32. M.V. Battisti, G. Montani, Phys. Lett. B 656, 96 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  33. A. Camacho, Gen. Relat. Gravit. 35, 1153 (2003)

    Article  ADS  Google Scholar 

  34. F. Brau, F. Buisseret, Phys. Rev. D 74, 036002 (2006)

    Article  ADS  Google Scholar 

  35. I. Kuntz, R. da Rocha, Eur. Phys. J. C 80, 478 (2020)

    Article  ADS  Google Scholar 

  36. D. Park, Phys. Rev. D 101, 106013 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  37. L.B. Castro, A.E. Obispo, J. Phys. A: Math. Theor. 50, 285202 (2017)

    Article  Google Scholar 

  38. A. Kempf, J. Phys. A: Math. Gen. 30, 2093 (1997)

    Article  ADS  Google Scholar 

  39. R.R. Sastry, J. Phys. A: Math. Gen. 33, 8305 (2000)

    Article  ADS  Google Scholar 

  40. B. Gönül, O. Özer, Y. Cancelik, M. Kocak, Phys. Lett. A 275, 238 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  41. D. Agboola, Phys. Scr. 80, 065304 (2009)

    Article  ADS  Google Scholar 

  42. Y.P. Varshni, Phys. Rev. A 41, 4682 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  43. A.I. Ahmadov, S.M. Aslanova, MSh. Orujova, S.V. Badalov, S.H. Dong, Phys. Lett. A 383, 3010 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  44. F. Ungan, M.K. Bahar, Phys. Lett. A 384, 126400 (2020)

    Article  MathSciNet  Google Scholar 

  45. M. Deng, C.S. Jia, Eur. Phys. J. Plus 133, 258 (2018)

    Article  Google Scholar 

  46. N. Rosen, P.M. Morse, Phys. Rev. 42, 210 (1932)

    Article  ADS  Google Scholar 

  47. C. Eckart, Phys. Rev. 35, 1303 (1930)

    Article  ADS  Google Scholar 

  48. H. Hassanabadi, E. Maghsoodi, A.N. Ikot, S. Zarrinkamar, Appl. Math. Comput. 219, 9388 (2013)

    MathSciNet  Google Scholar 

  49. J.Y. Guo, Z.Q. Sheng, Phys. Lett. A 338, 90 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  50. O. Aydoǧdu, R. Sever, Eur. Phys. J. A 43, 73 (2010)

    Article  ADS  Google Scholar 

  51. M.F. Manning, N. Rosen, Phys. Rev. 44, 951 (1933)

    Article  Google Scholar 

  52. X.Y. Chen, T. Chen, C.S. Jia, Eur. Phys. J. Plus 129, 75 (2014)

    Article  Google Scholar 

  53. G.F. Wei, S.H. Dong, Phys. Lett. B 686, 288 (2010)

    Article  ADS  Google Scholar 

  54. S.H. Dong, Commun. Theor. Phys. 55, 969 (2011)

    Article  ADS  Google Scholar 

  55. Y.Z. Zhang, J. Phys. A: Math. Theor. 45, 065206 (2012)

    Article  ADS  Google Scholar 

  56. P.B. Wiegmann, A.V. Zabrodin, Phys. Rev. Lett. 72, 1890 (1994)

    Article  ADS  Google Scholar 

  57. R. Sasaki, W.L. Yang, Y.Z. Zhang, SIGMA 5, 104 (2009)

    ADS  Google Scholar 

  58. Z.L. Zhao, Z.W. Long, M.Y. Zhang, Adv. High Energy Phys. 2019, 3423198 (2019)

    Article  Google Scholar 

  59. D. Agboola, Y.Z. Zhang, Ann. Phys. 330, 246 (2013)

    Article  ADS  Google Scholar 

  60. H. Sobhani, H. Hassanabadi, D. Bonatsos, F. Pan, S. Cui, Z.W. Feng, J.P. Draayer, Eur. Phys. J. A 56, 29 (2020)

    Article  ADS  Google Scholar 

  61. H. Sobhani, H. Hassanabadi, Nucl. Phys. A 983, 229 (2019)

    Article  ADS  Google Scholar 

  62. S.H. Dong, Wave Equations in Higher Dimensions (Springer, Dordrecht, 2011)

    Book  MATH  Google Scholar 

  63. S. Haouat, Phys. Lett. B 729, 33 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  64. H. Hassanabadi, S. Zarrinkamar, E. Maghsoodi, Phys. Lett. B 718, 678 (2012)

    Article  ADS  Google Scholar 

  65. Z.L. Zhao, C.Y. Long, Z.W. Long et al., Chin. Phys. B 26, 080301 (2017)

    Article  ADS  Google Scholar 

  66. S. Ikhdair, M. Eshghi, Chin. Phys. B 23, 120304 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (Grant No. 11465006) and the Major Research Project of innovative Group of Guizhou province (2018-013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Wen Long.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Brief Review Functional Bethe Ansatz Method

Appendix. Brief Review Functional Bethe Ansatz Method

Now, we briefly review the functional Bethe ansatz method. For details, please refer to literature [55,56,57,58,59,60,61,62]. For second-order ordinary differential equations of the form

$$\begin{aligned} \left[ {P\left( y \right) \frac{{{d^2}}}{{d{y^2}}} + Q\left( y \right) \frac{d}{dy} + W\left( y \right) } \right] S\left( y \right) = 0, \end{aligned}$$
(A.1)

in which P(y), Q(y) and W(y) are polynomials with the highest degrees of 4, 5, and 4 respectively, and they could be given as follows

$$\begin{aligned} P\left( y \right) = \sum \limits _{i = 0}^4 {{p_i}} {y^i},\;\;\;\;\;Q\left( y \right) = \sum \limits _{i = 0}^5 {{q_i}} {y^i},\;\;\;\;\;W\left( y \right) = \sum \limits _{i = 0}^4 {{w_i}} {y^i}, \end{aligned}$$
(A.2)

in which \({p_i}, {q_i}\) and \({w_i}\) are all constants. It is not difficult to find that the ordinary differential equation whose form satisfies (A.1) is quasi-exactly solvable, and whose corresponding exact solution can be given by n order polynomials of the variable y. Applying the functional Bethe ansatz method further, the polynomial solution of the ordinary differential equation with the form (A.1) can be written as

$$\begin{aligned} S\left( y \right) = \prod \limits _{i = 1}^n {\left( {y - {y_i}} \right) } ,\;\;\;\;\;S\left( y \right) \equiv 1,\;\;\;\;for\;\;\;\;n = 0, \end{aligned}$$
(A.3)

where the different roots \(y_1, y_2, \ldots , y_n\) could be determined. So, according to the ordinary differential equation (A.1), we have

$$\begin{aligned} \begin{aligned} - {w_0}&= \left( {{p_4}{y^4} + {p_3}{y^3} + {p_2}{y^2} + {p_1}y + {p_0}} \right) \sum \limits _{i = 1}^n {\frac{1}{{y - {y_i}}}} \sum \limits _{i \ne j}^n {\frac{2}{{{y_i} - {y_j}}}} \\&\quad + \left( {{q_5}{y^5} + {q_4}{y^4} + {q_3}{y^3} + {q_2}{y^2} + {q_1}y + {q_0}} \right) \sum \limits _{i = 1}^n {\frac{1}{{y - {y_i}}}} + {w_4}{y^4} + {w_3}{y^3} + {w_2}{y^2} + {w_1}y. \end{aligned} \end{aligned}$$
(A.4)

It is not difficult to see that the left side of Eq. (A.4) is a constant, while its right is a meromorphic function which has simple poles \(y={y_i}\) and singularity at \(y=\infty \). Therefore, the precondition that the equation is always valid requires that its right side must also be constant, which is a sufficient and necessary condition that can be obtained from Liuville’s theorem. Thus, the constraints have

$$\begin{aligned} \begin{aligned} {w_4}&= - n{q_5},\;\;\;\;\; {w_3} = - {q_5}\sum \limits _{i = 1}^n {{y_i}} - n{q_4},\;\;\;\;\; {w_2} = - {q_5}\sum \limits _{i = 1}^n {y_i^2} - {q_4}\sum \limits _{i = 1}^n {{y_i}} - n\left( {n - 1} \right) {p_4} - n{q_3},\\ {w_1}&= - {q_5}\sum \limits _{i = 1}^n {y_i^3} - {q_4}\sum \limits _{i = 1}^n {y_i^2} - \left[ {2\left( {n - 1} \right) {p_4} + {q_3}} \right] \sum \limits _{i = 1}^n {{y_i}} - n\left( {n - 1} \right) {p_3} - n{q_2},\\ {w_0}&= - {q_5}\sum \limits _{i = 1}^n {y_i^4} - {q_4}\sum \limits _{i = 1}^n {y_i^3} - \left[ {2\left( {n - 1} \right) {p_4} + {q_3}} \right] \sum \limits _{i = 1}^n {y_i^2 - 2{p_4}} \sum \limits _{i < j}^n {{y_i}{y_j}} \\&\quad - \left[ {2\left( {n - 1} \right) {p_3} + {q_2}} \right] \sum \limits _{i = 1}^n {{y_i}} - n\left( {n - 1} \right) {p_2} - n{q_1}, \end{aligned} \end{aligned}$$
(A.5)

in which the different roots \(y_1, y_2, \ldots , y_n\) satisfy the Bethe ansatz equations

$$\begin{aligned} \sum \limits _{i \ne j}^n {\frac{2}{{{y_i} - {y_j}}} + \frac{{{q_5}y_i^5 + {q_4}y_i^4 + {q_3}y_i^3 + {q_2}y_i^2 + {q_1}{y_i} + {q_0}}}{{{p_4}y_i^4 + {p_3}y_i^3 + {p_2}y_i^2 + {p_1}{y_i} + {p_0}}}} = 0,\;\;\;\;\;\;i = 1,2,\; \ldots ,\;n. \end{aligned}$$
(A.6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, ZL., Wu, H. & Long, ZW. Discussion on Exact Solution of Dirac Equation with Generalized Exponential Potential in the Presence of Generalized Uncertainty Principle. Few-Body Syst 62, 50 (2021). https://doi.org/10.1007/s00601-021-01643-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-021-01643-y

Navigation