Skip to main content
Log in

Excited states of Bose–Einstein condensates with degenerate attractive interactions

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the Bose–Einstein condensates (BEC) in two or three dimensions with attractive interactions, described by \(L^{2}\) constraint Gross-Pitaevskii energy functional. First, we give the precise description of the chemical potential of the condensate \(\mu \) and the attractive interaction a. Next, for a class of degenerate trapping potential with non-isolated critical points, we obtain the existence and the local uniqueness of the excited states by accurately analyzing the location of the concentrated points and the Lagrange multiplier. Our results on degenerate trapping potential with non-isolated critical points are new for ground states of BEC and singularly perturbed nonlinear Schrödinger equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Rat. Mech. Anal. 140, 285–300 (1997)

    Article  Google Scholar 

  2. Anderson, M., Ensher, J., Matthews, M., Wieman, C., Cornell, E.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  Google Scholar 

  3. Bao, W., Cai, Y.: Mathmatical theory and numerical methods for Bose–Einstein condensation. Kinet. Relat. Models 6, 1–135 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)

    Article  Google Scholar 

  5. Byeon, J., Jeanjean, L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Rat. Mech. Anal. 185, 185–200 (2007)

    Article  Google Scholar 

  6. Cao, D., Heinz, H.: Uniqueness of positive multi-lump bound states of nonlinear Schrödinger equations. Math. Z. 243, 599–642 (2003)

    Article  MathSciNet  Google Scholar 

  7. Cao, D., Li, S., Luo, P.: Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 54, 4037–4063 (2015)

    Article  Google Scholar 

  8. Cao, D., Noussair, E., Yan, S.: Existence and uniqueness results on single-peaked solutions of a semilinear problem. Ann. Inst. H. Poincaré Anal. Non Linéaire 15, 73–111 (1998)

    Article  MathSciNet  Google Scholar 

  9. Cao, D., Noussair, E., Yan, S.: Solutions with multiple peaks for nonlinear elliptic equations. Proc. R. Soc. Edinb. 129A, 235–264 (1999)

    Article  MathSciNet  Google Scholar 

  10. Cao, D., Peng, S.: Semi-classical bound states for Schrödinger equations with potentials vanishing or unbounded at infinity. Commun. Partial Differ. Equ. 34, 1566–1591 (2009)

    Article  Google Scholar 

  11. Cornell, E., Wieman, C.: Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002)

    Article  Google Scholar 

  12. Dancer, E., Yan, S.: Interior and boundary peak solutions for a mixed boundary value problem. Indiana Univ. Math. J. 48, 1177–1212 (1999)

    Article  MathSciNet  Google Scholar 

  13. Dancer, E., Yan, S.: On the existence of multipeak solutions for nonlinear field equations on \({\mathbb{R}}^N\). Discrete Contin. Dynam. Syst. 6, 39–50 (2000)

    Article  Google Scholar 

  14. Davis, K., Mewes, M., Andrews, M., van Druten, N., Durfee, D., Kurn, D., Ketterle, W.: Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

    Article  Google Scholar 

  15. Deng, Y., Lin, C., Yan, S.: On the prescribed scalar curvature problem in \({\mathbb{R}}^N\), local uniqueness and periodicity. J. Math. Pures Appl. 104, 1013–1044 (2015)

    Article  MathSciNet  Google Scholar 

  16. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MathSciNet  Google Scholar 

  17. Glangetas, L.: Uniqueness of positive solutions of a nonlinear elliptic equation involving the critical exponent. Nonlinear Anal. 20, 571–603 (1993)

    Article  MathSciNet  Google Scholar 

  18. Gross, E.: Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454–466 (1961)

    Article  MathSciNet  Google Scholar 

  19. Grossi, M.: On the number of single-peak solutions of the nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 19, 261–280 (2002)

    Article  MathSciNet  Google Scholar 

  20. Grossi, M., Pistoia, A.: Locating the peak of ground states of nonlinear Schr?Dinger equations. Houston J. Math. 31, 621–635 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Guo, H., Zhou, H.: A constrained variational problem arising in attractive Bose–Einstein condensate with ellipse-shaped potential. Appl. Math. Lett. 87, 35–41 (2019)

    Article  MathSciNet  Google Scholar 

  22. Guo, Y., Lin, C., Wei, J.: Local uniqueness and refined spike profiles of ground states for two-dimensional attractive Bose–Einstein condensates. SIAM J. Math. Anal. 49, 3671–3715 (2017)

    Article  MathSciNet  Google Scholar 

  23. Guo, Y., Seiringer, R.: On the mass concentration for Bose–Einstein condensates with attractive interactions. Lett. Math. Phys. 104, 141–156 (2014)

    Article  MathSciNet  Google Scholar 

  24. Guo, Y., Wang, Z., Zeng, X., Zhou, H.: Properties of ground states of attractive Gross–Pitaevskii equations with multi-well potentials. Nonlinearity 31, 957–979 (2018)

    Article  MathSciNet  Google Scholar 

  25. Guo, Y., Zeng, X., Zhou, H.: Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 809–828 (2016)

    Article  MathSciNet  Google Scholar 

  26. Guo, Y.X., Peng, S., Yan, S.: Local uniqueness and periodicity induced by concentration. Proc. Lond. Math. Soc. 114, 1005–1043 (2017)

    Article  MathSciNet  Google Scholar 

  27. Ketterle, W.: Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002)

    Article  Google Scholar 

  28. Lieb, E., Seiringer, R., Solovej, J., Yngvason, J.: The mathematics of the Bose gas and its condensation. Oberwolfach Seminars, vol. 34. Birkhauser Verlag, Basel (2005)

    MATH  Google Scholar 

  29. Lieb, E., Seiringer, R., Yngvason, J.: A rigorous derivation of the Gross–Pitaevskii energy functional for a two-dimensional Bose gas. Commun. Math. Phys. 224, 17–31 (2001)

    Article  MathSciNet  Google Scholar 

  30. Lu, G., Wei, J.: On nonlinear Schrödinger equations with totally degenerate potentials. C. R. Acad. Sci. Paris Sér. I Math. 326(6), 691–696 (1998)

    Article  MathSciNet  Google Scholar 

  31. Pitaevskii, L.: Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451–454 (1961)

    MathSciNet  Google Scholar 

  32. Rabinowitz, P.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juncheng Wei.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the authors.

Additional information

Communicated by Manuel del Pino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Luo and Peng were supported by the Key Project of NSFC (No.11831009). Luo was partially supported by NSFC Grants (No.11701204). The research of J. Wei is partially supported by NSERC of Canada (RGPIN-2018-03773). Yan was supported by NSFC Grants (No.11629101)

Appendices

Appendix

A. The kernel of a linear operator

Lemma A.1

Let \(\xi _0:=(\xi _1,\cdots ,\xi _k)\) be a bounded solution of following system:

$$\begin{aligned} -\Delta \xi _{i}(x)+\big (1-3Q^2(x)\big )\xi _{i}(x)=-\frac{2}{ka_*}Q(x) \Big (\sum ^k_{l=1}\int _{{\mathbb {R}}^N}Q^3(x)\xi _l(x)\Big ),~\text{ for }~i=1,\cdots ,k. \end{aligned}$$
(A.1)

Then for \(N=2,3\), it holds

$$\begin{aligned} \xi _i(x)= \sum ^N_{j=0}\gamma _{i,j}\psi _j, \end{aligned}$$
(A.2)

where \(\gamma _{i,j}\) are some constants,

$$\begin{aligned} \psi _0=Q+x\cdot \nabla Q,~\psi _j=\frac{\partial Q}{\partial x_j},~\text{ for }~j=1,\cdots ,N. \end{aligned}$$
(A.3)

Moreover, \(\gamma _{i,0}=\gamma _{l,0}\) for all \(i,l=1,\cdots ,k\).

Proof

Noting that Q(x) is a radial function, using the technique of the separation of variables, we can prove

$$\begin{aligned} \xi _i(x)= \sum ^N_{j=1}\gamma _{i,j}\psi _j+ \xi _{i, 0}, \end{aligned}$$

where \(\gamma _{i, j}\) is some constant, and \(\xi _{i, 0}\) is a radial function, satisfying

$$\begin{aligned} -\Delta \xi _{i,0}(x)+\big (1-3Q^2(x)\big )\xi _{i, 0}(x)=-\frac{2}{ka_*}Q(x) \Big (\sum ^k_{l=1}\int _{{\mathbb {R}}^N}Q^3(x)\xi _l(x)\Big ). \end{aligned}$$

We set \(\bar{L}(u):=-\Delta u(x)+\big (1-3Q^2(x)\big )u(x)\). Then

$$\begin{aligned} \bar{L}\psi _0= -2 Q. \end{aligned}$$

Since \(\bar{L}\) has no non-trivial bounded radially symmetric kernel, it holds

$$\begin{aligned} \xi _{i, 0}= \gamma _{i, 0} \psi _0. \end{aligned}$$

Using (3.12), we find that \(\gamma _{i, 0} \) satisfies

$$\begin{aligned} -2Q(x)\gamma _{i,0}=-\frac{2}{ka_*}Q(x) \frac{4-N}{4} \int _{{\mathbb {R}}^N} Q^4 =-\frac{2}{k}Q(x) \sum ^k_{l=1}\gamma _{l,0}, \end{aligned}$$

which gives \(\gamma _{i,0}=\gamma _{l,0}\) for all \(i,l=1,\cdots ,k\). \(\square \)

B. Calculations involving curvatures

Now let \(\Gamma \in C^2\) be a closed hypersurface in \({\mathbb {R}}^N\). For \(y\in \Gamma \), let \(\nu (y)\) and T(y) denote respectively the outward unit normal to \(\Gamma \) at y and the tangent hyperplane to \(\Gamma \) at y. The curvatures of \(\Gamma \) at a fixed point \(y_0\in \Gamma \) are determined as follows. By a rotation of coordinates, we can assume that \(y_0=0\) and \(\nu (0)\) is the \(x_N\)-direction, and \(x_j\)-direction is the j-th principal direction.

In some neighborhood \({\mathcal {N}}={\mathcal {N}}(0)\) of 0, we have

$$\begin{aligned} \Gamma =\bigl \{ x: x_N=\varphi (x')\bigr \}, \end{aligned}$$

where \(x'=(x_1,\cdots ,x_{N-1})\),

$$\begin{aligned} \varphi (x') =\frac{1}{2} \sum _{j=1}^{N-1} \kappa _j x_j^2 + O(|x'|^3), \end{aligned}$$

where \(\kappa _j\), is the j-th principal curvature of \(\Gamma \) at 0. The Hessian matrix \([D^2 \varphi (0)]\) is given by

$$\begin{aligned} {[}D^2 \varphi (0)]=diag [\kappa _1,\cdots ,\kappa _{N-1}]. \end{aligned}$$

Suppose that W is a smooth function, such that \(W(x)=a\) for all \(x\in \Gamma \).

Lemma B.1

We have

$$\begin{aligned}&\frac{\partial W(x)}{\partial x_l}\Bigr |_{x=0}=0, ~ l=1,\cdots ,N-1, \end{aligned}$$
(B.1)
$$\begin{aligned}&\frac{\partial ^2 W(x)}{\partial x_m\partial x_l }\Bigr |_{x=0} =-\frac{\partial W\big (x\big )}{\partial x_N}\Bigr |_{x=0} \kappa _i \delta _{ml}, ~\text{ for }~m, l=1,\cdots , N-1, \end{aligned}$$
(B.2)

where \(\kappa _1,\cdots ,\kappa _{N-1}\), are the principal curvatures of \(\Gamma \) at 0.

Proof

First, we have \(W\big (x',\varphi (x')\big )=0\). And then we find

$$\begin{aligned} \frac{\partial W\big (x',\varphi (x')\big )}{\partial x_m} + \frac{\partial W\big (x',\varphi (x')\big )}{\partial x_N} \frac{\partial \varphi (x')}{\partial x_m} =0, ~\text{ for }~m=1,\cdots ,N-1. \end{aligned}$$
(B.3)

Letting \(x'=0\) in (B.3), we obtain (B.1).

Differentiating (B.3) with respect to \(x_l\) for \(l=1,\cdots ,N-1\), we get

$$\begin{aligned}&\frac{\partial ^2 W\big (x',\varphi (x')\big )}{\partial x_m\partial x_l} +\frac{\partial ^2 W\big (x',\varphi (x')\big )}{\partial x_m\partial x_N} \frac{\partial \varphi (x')}{\partial x_l} + \frac{\partial W\big (x',\varphi (x')\big )}{\partial x_N} \frac{\partial ^2 \varphi (x')}{\partial x_m x_l}\nonumber \\&\quad + \Big (\frac{\partial ^2 W \big (x',\varphi (x')\big )}{\partial x_N \partial x_l} +\frac{\partial ^2 W\big (x',\varphi (x')\big )}{\partial x_N\partial x_N} \frac{\partial \varphi (x')}{\partial x_l}\Big ) \frac{\partial \varphi (x')}{\partial x_m}=0. \end{aligned}$$
(B.4)

Let \(x'=0\) in (B.4), then we get (B.2). \(\square \)

C. An example

In this section, we use the above results to the following potential V(x). Let

$$\begin{aligned} F_1(x)= \sum ^N_{j=1}\frac{x_j^2}{a_j^2}-1,~F_2(x)= \sum ^N_{j=1}\big (\frac{x_j}{a_j}-3\big )^2-1, \end{aligned}$$

where \(a_j>0\), \(a_j\ne a_l\) for \(j\ne l\). Let \(\Gamma _i\) is defined by \(F_i(x)=0\) with \(i=1,2\). Take

$$\begin{aligned} V(x)= {\left\{ \begin{array}{ll} F_1^2+1,~\text{ in }~W_1,\\ F_2^2+1,~\text{ in }~W_2,\\ \text{ else },~\text{ in }~{\mathbb {R}}^N\backslash \bigcup ^2_{i=1}W_i. \end{array}\right. } \end{aligned}$$

and

$$\begin{aligned} W_i=\Big \{x\in {\mathbb {R}}^N; |F_i|\le \delta _0\Big \}, ~\text{ with } \text{ some } \text{ small } \text{ fixed }~\delta _0>0~\text{ and }~i=1,2. \end{aligned}$$

Lemma C.1

All critical points \(\Delta V\) on \(\Gamma _1\) are \((\pm a_1,0,\cdots , 0), \cdots , (0,\cdots , 0, \pm a_N)\).

Proof

First, we find

$$\begin{aligned} \nabla V(x) = 2 F \nabla F,~~\Delta V= 2 F \Delta F +2 |\nabla F|^2 =\Big (\sum ^N_{l=1}\frac{x_l^2}{a_l^2}-1\Big ) \sum _{l=1}^N\frac{4}{a_i^2} +\sum _{l=1}^N \frac{8x_l^2}{a_l^4}. \end{aligned}$$

To find a critical point \(\Delta V\) on \(\Gamma \), we need to study the following equation

$$\begin{aligned} \nabla (\Delta V) =\lambda \nabla F, \end{aligned}$$

for some unknown constant \(\lambda \). That is,

$$\begin{aligned} \frac{8x_l}{a_l^2} \sum _{k=1}^N \frac{1}{a_k^2} + \frac{16 x_i}{a_l^4} = \frac{2\lambda x_i}{a_l^2}, \quad l=1,\cdots , N. \end{aligned}$$

Thus, either \(x_l=0\), or \(\lambda = 4 \displaystyle \sum _{k=1}^N \frac{1}{a_k^2} + \frac{8}{a_l^2}\). If \(\lambda =4 \displaystyle \sum _{k=1}^N \frac{1}{a_k^2} + \frac{8}{a_l^2}\), then \(x_j=0\) for all \(j\ne l\). This shows that all critical points \(\Delta V\) on \(\Gamma \) are \((\pm a_1,0,\cdots , 0), \cdots , (0,\cdots , 0, \pm a_N)\). \(\square \)

Without loss of generality, we consider the point \(b_1=(0,\cdots , 0, a_N)\). In this case, \(\tau _j\) is the \(x_j\) direction, \(j=1, \cdots , N-1\), and \(\nu \) is the \(x_N\) direction.

Lemma C.2

If \(a_l\ne a_j\) for \(l\ne j\). Thus, \(b_1\) is non-degenerate on \(\Gamma _1\).

Proof

We have

$$\begin{aligned} \frac{\partial ^2 V(b_1)}{\partial x_N^2}=\frac{8}{a_N^2}>0, ~~ \frac{\partial \Delta V(b_1)}{\partial x_N}=\frac{8}{a_N} \sum _{l=1}^N\frac{1}{a_l^2}+ \frac{16}{a_N^3}>0. \end{aligned}$$

On \(\Gamma _1\), it holds

$$\begin{aligned} \Delta V(x)=\sum _{l=1}^N \frac{8 x_l^2}{a_l^4}= 8 \Bigl (\sum _{l=1}^{N-1} \frac{ x_l^2}{a_l^4}+\frac{1}{a_N^2} \Bigl ( 1- \sum _{l=1}^{N-1} \frac{ x_l^2}{a_l^2}\Bigr ) \Bigr ). \end{aligned}$$

This gives

$$\begin{aligned} \Big (\frac{\partial ^2 \Delta V(b_1)}{\partial x_lx_j}\Big )_{1\le l,j\le N-1}= \;diag~\Bigl (\frac{16}{a_1^2} \Big (\frac{1}{a_1^2}-\frac{1}{a_N^2}\Big ),\cdots ,\frac{16}{a_{N-1}^2} \Big (\frac{1}{a_{N-1}^2}-\frac{1}{a_N^2}\Big )\Bigr ), \end{aligned}$$

which is non-singular since \(a_l\ne a_j\) for \(l\ne j\). Thus, \(b_1\) is also non-degenerate on \(\Gamma _1\). \(\square \)

Lemma C.3

The matrix

$$\begin{aligned} \Big (\frac{\partial ^2 \Delta V(b_1)}{\partial x_ix_j}\Big )_{1\le i,j\le N-1}+\frac{\partial \Delta V(b_1)}{\partial x_N} diag (\kappa _1, \cdots , \kappa _{N-1}) \end{aligned}$$
(C.1)

is non singular if one of the following conditions holds

  1. (1)

    \(a_N<a_l\), \(l=1,\cdots , N-1\).

  2. (2)

    \(a_N>a_l\), \(l=1,\cdots , N-1\) and all the \(a_i\) are close to a constant.

Proof

Near \(b_1=(0,\cdots , 0, a_N)\), \(\Gamma \) is given by

$$\begin{aligned} x_N= a_N \sqrt{ 1-\sum _{l=1}^{N-1} \frac{x_l^2}{a_l^2}}= a_N -\frac{1}{2} \sum _{l=1}^{N-1} \frac{ a_N x_l^2}{a_l^2}+ O(|x'|^3). \end{aligned}$$

Thus, \(\kappa _l = -\frac{ a_N }{a_l^2},\quad l=1,\cdots , N-1\). So we have

$$\begin{aligned} \frac{\partial \Delta V(b_1)}{\partial x_N} \kappa _j(b_1)=-\Bigl (\frac{8}{a_j^2} \sum _{l=1}^N\frac{1}{a_l^2} +\frac{16}{a_j^2a_N^2}\Bigr ). \end{aligned}$$

If \(x_0\) is a maximum point of \(\Delta V\) on \(\Gamma \), that is \(a_N<a_l\), \(l=1,\cdots , N-1\), then \(\Big (\frac{\partial ^2 \Delta V(x_0)}{\partial x_lx_j}\Big )_{1\le l,j\le N-1}\) is negative. Thus, (C.1) is also a negative matrix. On the other hand, if \(b_1\) is a minimum point of \(\Delta V\) on \(\Gamma _1\) and all the \(a_j\) are close to a constant, that is \(a_N>a_l\), \(l=1,\cdots , N-1\), then (C.1) is negative. \(\square \)

Finally, for \(b_2=(0,\cdots ,0,4a_N)\in \Gamma _2\), we have the similar results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, P., Peng, S., Wei, J. et al. Excited states of Bose–Einstein condensates with degenerate attractive interactions. Calc. Var. 60, 155 (2021). https://doi.org/10.1007/s00526-021-02046-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02046-x

Navigation