Skip to main content

Advertisement

Log in

Nodulation of the neotropical genus Calliandra by alpha or betaproteobacterial symbionts depends on the biogeographical origins of the host species

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The neotropical genus Calliandra is of great importance to ecology and agroforestry, but little is known about its nodulation or its rhizobia. The nodulation of several species from two restricted diversity centres with native/endemic species (Eastern Brazil and North-Central America) and species widespread in South America, as well as their nodule structure and the molecular characterization of their rhizobial symbionts based on phylogeny of the 16S rRNA, recA and nodC gene, is reported herein. Species representative of different regions were grown in Brazilian soil, their nodulation observed, and their symbionts characterized. Calliandra nodules have anatomy that is typical of mimosoid nodules regardless of the microsymbiont type. The rhizobial symbionts differed according to the geographical origin of the species, i.e. Alphaproteobacteria (Rhizobium) were the exclusive symbionts from North-Central America, Betaproteobacteria (Paraburkholderia) from Eastern Brazil, and a mixture of both nodulated the widespread species. The symbiont preferences of Calliandra species are the result of the host co-evolving with the “local” symbiotic bacteria that thrive in the different edaphoclimatic conditions, e.g. the acidic soils of NE Brazil are rich in acid-tolerant Paraburkholderia, whereas those of North-Central America are typically neutral-alkaline and harbour Rhizobium. It is hypothesized that the flexibility of widespread species in symbiont choice has assisted in their wider dispersal across the neotropics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Information data related to the bacteria are available on: http://alelomicro.cenargen.embrapa.br/InterMicro/Passaporte/bancoAcesso.xjs?ids=3. The other data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. de Souza ÉR, Lewis GP, Forest F, Schnadelbach AS, van den Berg C, de Queiroz LP (2013) Phylogeny of Calliandra (Leguminosae: Mimosoideae) based on nuclear and plastid molecular markers. Taxon 62(6):1200–1219. https://doi.org/10.12705/626.2

  2. Group TLPW, Bruneau A, Doyle JJ, Herendeen P, Hughes C, Kenicer G, Lewis G, Mackinder B, Pennington RT, Sanderson MJ, Wojciechowski MF, Boatwright S, Brown G, Cardoso D, Crisp M, Egan A, Fortunato RH, Hawkins J, Kajita T, Klitgaard B, Koenen E, Lavin M, Luckow M, Marazzi B, McMahon MM, Miller JT, Murphy DJ, Ohashi H, de Queiroz LP, Rico L, Särkinen T, Schrire B, Simon MF, Souza ER, Steele K, Torke BM, Wieringa JJ, van Wyk B-E (2013) Legume phylogeny and classification in the 21st century: progress, prospects and lessons for other species–rich clades. Taxon 62 (2):217–248. https://doi.org/10.12705/622.8

  3. Mattagajasingh I, Acharya L, Mukherjee AK, Panda PC, Das P (2006) Genetic relationships among nine cultivated taxa of Calliandra Benth. (Leguminosae: Mimosoideae) using random amplified polymorphic DNA (RAPD) markers. Scientia Horticulturae 110(1):98–103. https://doi.org/10.1016/j.scienta.2006.06.020

    Article  CAS  Google Scholar 

  4. Barneby RC (1998) Silk tree, Granacaste monkey’ earring — a genetic systemfor the synandrous Mimosaceae of the Americas. Part III. Calliandra, vol vol. 74. Memoirs of The New York Botanical Garden

  5. Lesueur D, Ingleby K, Odee D, Chamberlain J, Wilson J, Tiki Manga T, Sarrailh J-M, Pottinger A (2001) Improvement of forage production in Calliandra calothyrsus: methodology for the identification of an effective inoculum containing Rhizobium strains and arbuscular mycorrhizal isolates. J Biotechnol 91(2):269–282. https://doi.org/10.1016/S0168-1656(01)00328-5

    Article  CAS  PubMed  Google Scholar 

  6. Hernández HM (2008) Calliandra dolichopoda and C. cualensis (Leguminosae, Mimosoideae), two new species from Mexico. Brittonia 60(3):245–251. https://doi.org/10.1007/s12228-008-9019-y

    Article  Google Scholar 

  7. Silva VC, Alves PAC, Rhem MFK, dos Santos JMF, James EK, Gross E (2018) Brazilian species of Calliandra Benth. (tribe Ingeae) are nodulated by diverse strains of Paraburkholderia. Syst App Microbiol 41(3):241–250. https://doi.org/10.1016/j.syapm.2017.12.003

    Article  Google Scholar 

  8. Rivas R, García-Fraile P, Velázquez E (2009) Taxonomy of bacteria nodulating legumes. Microbiology Insights 2:MBI.S3137. https://doi.org/10.4137/mbi.s3137

  9. Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ (2015) Bacterial associations with legumes. Crit Rev Plant Sci 34(1–3):17–42. https://doi.org/10.1080/07352689.2014.897899

    Article  Google Scholar 

  10. Sprent JI, Ardley J, James EK (2017) Biogeography of nodulated legumes and their nitrogen-fixing symbionts. New Phytologist 215(1):40–56. https://doi.org/10.1111/nph.14474

    Article  CAS  PubMed  Google Scholar 

  11. Andrews M, Andrews ME (2017) Specificity in legume-rhizobia symbioses. Int J Mol Sci 18(4):705

    Article  PubMed Central  Google Scholar 

  12. Gyaneshwar P, Hirsch AM, Moulin L, Chen WM, Elliott GN, Bontemps C, Estrada-de Los Santos P, Gross E, Dos Reis FB, Sprent JI, Young JP, James EK (2011) Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol Plant-Microbe Interact 24(11):1276–1288. https://doi.org/10.1094/mpmi-06-11-0172

  13. Estrada-de los Santos P, Palmer M, Chávez-Ramírez B, Beukes C, Steenkamp ET, Briscoe L, Khan N, Maluk M, Lafos M, Humm E, Arrabit M, Crook M, Gross E, Simon MF, Dos Reis Junior FB, Whitman WB, Shapiro N, Poole PS, Hirsch AM, Venter SN, James EK (2018) Whole genome analyses suggests that Burkholderia sensu lato contains two additional novel genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): implications for the evolution of diazotrophy and nodulation in the Burkholderiaceae. Genes 9 (8):389

  14. Garau G, Yates RJ, Deiana P, Howieson JG (2009) Novel strains of nodulating Burkholderia have a role in nitrogen fixation with papilionoid herbaceous legumes adapted to acid, infertile soils. Soil Biol Biochem 41(1):125–134. https://doi.org/10.1016/j.soilbio.2008.10.011

  15. Beukes CW, Venter SN, Law IJ, Phalane FL, Steenkamp ET (2013) South African Papilionoid legumes are nodulated by diverse Burkholderia with unique nodulation and nitrogen-fixation loci. Plos One 8(7):e68406. https://doi.org/10.1371/journal.pone.0068406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Howieson JG, De Meyer SE, Vivas-Marfisi A, Ratnayake S, Ardley JK, Yates RJ (2013) Novel Burkholderia bacteria isolated from Lebeckia ambigua – a perennial suffrutescent legume of the fynbos. Soil Biol Biochem 60:55–64. https://doi.org/10.1016/j.soilbio.2013.01.009

    Article  CAS  Google Scholar 

  17. Lemaire B, Dlodlo O, Chimphango S, Stirton C, Schrire B, Boatwright JS, Honnay O, Smets E, Sprent J, James EK, Muasya AM (2014) Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape Subregion (South Africa). FEMS Microbiol Ecol 91(2):1–17. https://doi.org/10.1093/femsec/fiu024

    Article  CAS  PubMed  Google Scholar 

  18. Barrett CF, Parker MA (2006) Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. Nodule Bacteria on two Mimosa spp. in Costa Rica. App Environ Microbiol 72(2):1198–1206. https://doi.org/10.1128/aem.72.2.1198-1206.2006

    Article  CAS  Google Scholar 

  19. Chen W-M, de Faria SM, Straliotto R, Pitard RM, Simões-Araùjo JL, Chou J-H, Chou Y-J, Barrios E, Prescott AR, Elliott GN, Sprent JI, Young JPW, James EK (2005) Proof that Burkholderia strains form effective symbioses with legumes: a study of novel Mimosa nodulating strains from South America. App Environ Microbiol 71(11):7461–7471. https://doi.org/10.1128/aem.71.11.7461-7471.2005

    Article  CAS  Google Scholar 

  20. Bontemps C, Elliott GN, Simon M F, Reis Júnior FB dos, Gross E, Lawton RC, Elias Neto N, Loureiro M de F, Faria SM de, Sprent JI, James EK, Young JPW (2010) Burkholderia species are ancient symbionts of legumes. Mol Ecology 19(1):44–52. https://doi.org/10.1111/j.1365-294X.2009.04458.x

  21. dos Reis Jr FB, Simon MF, Gross E, Boddey RM, Elliott GN, Neto NE, de Fatima Loureiro M, de Queiroz LP, Scotti MR, Chen W-M, Norén A, Rubio MC, de Faria SM, Bontemps C, Goi SR, Young JPW, Sprent JI, James EK (2010) Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil. New Phytologist 186(4):934–946. https://doi.org/10.1111/j.1469-8137.2010.03267.x

    Article  CAS  Google Scholar 

  22. Mishra RPN, Tisseyre P, Melkonian R, Chaintreuil C, Miché L, Klonowska A, Gonzalez S, Bena G, Laguerre G, Moulin L (2012) Genetic diversity of Mimosa pudica rhizobial symbionts in soils of French Guiana: investigating the origin and diversity of Burkholderia phymatum and other beta-rhizobia. FEMS Microbiol Ecol 79(2):487–503. https://doi.org/10.1111/j.1574-6941.2011.01235.x

  23. de Castro PR, dos Reis Junior FB, Zilli JE, Fischer D, Hofmann A, James EK, Simon MF (2018) Soil characteristics determine the rhizobia in association with different species of Mimosa in central Brazil. Plant Soil 423(1):411–428. https://doi.org/10.1007/s11104-017-3521-5

    Article  CAS  Google Scholar 

  24. Bournaud C, de Faria SM, dos Santos JMF, Tisseyre P, Silva M, Chaintreuil C, Gross E, James EK, Prin Y, Moulin L (2013) Burkholderia species are the most common and preferred nodulating symbionts of the Piptadenia group (Tribe Mimoseae). Plos One 8(5):e63478. https://doi.org/10.1371/journal.pone.0063478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bala A, Giller KE (2001) Symbiotic specificity of tropical tree rhizobia for host legumes. New Phytologist 149(3):495–507. https://doi.org/10.1046/j.1469-8137.2001.00059.x

    Article  PubMed  Google Scholar 

  26. Lesueur D, Founoune H, Lebonvallet S, Sarr A (2010) Effect of rhizobial inoculation on growth of Calliandra tree species under nursery conditions. New Forests 39(2):129–137. https://doi.org/10.1007/s11056-009-9166-3

    Article  Google Scholar 

  27. Rincón-Rosales R, Villalobos-Escobedo JM, Rogel MA, Martinez J, Ormeño-Orrillo E, Martínez-Romero E (2013) Rhizobium calliandrae sp. nov., Rhizobium mayense sp. nov. and Rhizobium jaguaris sp. nov., rhizobial species nodulating the medicinal legume Calliandra grandiflora. International Journal of Systematic and Evolutionary Microbiology 63 (Pt_9):3423–3429. https://doi.org/10.1099/ijs.0.048249-0

  28. Moulin L, Klonowska A, Caroline B, Booth K, Vriezen JAC, Melkonian R, James EK, Young JPW, Bena G, Hauser L, Land M, Kyrpides N, Bruce D, Chain P, Copeland A, Pitluck S, Woyke T, Lizotte-Waniewski M, Bristow J, Riley M (2014) Complete Genome sequence of Burkholderia phymatum STM815T, a broad host range and efficient nitrogen-fixing symbiont of Mimosa species. Stand Genomic Sci 9(3):763–774. https://doi.org/10.4056/sigs.4861021

  29. Santos JMFd, Casaes Alves PA, Silva VC, Kruschewsky Rhem MF, James EK, Gross E (2017) Diverse genotypes of Bradyrhizobium nodulate herbaceous Chamaecrista (Moench) (Fabaceae, Caesalpinioideae) species in Brazil. System Appl Microbiol 40 (2):69–79. :https://doi.org/10.1016/j.syapm.2016.12.004

  30. Elliott GN, Chen W-M, Bontemps C, Chou J-H, Young JPW, Sprent JI, James EK (2007) Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Annals Botany 100 (7):1403–1411. https://doi.org/10.1093/aob/mcm227

  31. Vincent JM (1970) A manual for the practical study of root-nodule bacteria. (International Biological Programme Handbook 15). Blackwell: Oxford, U.K.

  32. da Silva CJ, Baraúna AC, Mosqueira CA, Gianluppi V, Zilli JÉ, da Silva K (2016) Stylosanthes spp. from Amazon savanna harbour diverse and potentially effective rhizobia. App Soil Ecol 108:54–61. https://doi.org/10.1016/j.apsoil.2016.08.003

    Article  Google Scholar 

  33. Simon MF, Grether R, de Queiroz LP, Särkinen TE, Dutra VF, Hughes CE (2011) The evolutionary history of Mimosa (Leguminosae): toward a phylogeny of the sensitive plants. Am J Bot 98(7):1201–1221. https://doi.org/10.3732/ajb.1000520

    Article  PubMed  Google Scholar 

  34. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  35. Vinuesa P, Silva C, Lorite MJ, Izaguirre-Mayoral ML, Bedmar EJ, Martínez-Romero E (2005) Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst App Microbiol 28(8):702–716. https://doi.org/10.1016/j.syapm.2005.05.007

    Article  CAS  Google Scholar 

  36. Payne GW, Vandamme P, Morgan SH, LiPuma JJ, Coenye T, Weightman AJ, Jones TH, Mahenthiralingam E (2005) Development of a recA gene-based identification approach for the entire Burkholderia genus. App Environ Microbiol 71(7):3917–3927. https://doi.org/10.1128/aem.71.7.3917-3927.200

    Article  CAS  Google Scholar 

  37. Chen W-M, de Faria SM, James EK, Elliott GN, Lin K-Y, Chou J-H, Sheu S-Y, Cnockaert M, Sprent JI, Vandamme P (2007) Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Micr 57(5):1055–1059. https://doi.org/10.1099/ijs.0.64873-0

    Article  CAS  Google Scholar 

  38. Paulitsch F, Dall’Agnol RF, Delamuta JRM, Ribeiro RA, da Silva Batista JS, Hungria M (2019) Paraburkholderia guartelaensis sp. nov., a nitrogen-fixing species isolated from nodules of Mimosa gymnas in an ecotone considered as a hotspot of biodiversity in Brazil. Arch Microbiol 201(10):1435–1446. https://doi.org/10.1007/s00203-019-01714-z

    Article  CAS  PubMed  Google Scholar 

  39. Langleib M, Beracochea M, Zabaleta M, Battistoni F, Sotelo-Silveira J, Fabiano E, Iriarte A, Platero R (2019) Draft genome sequence of Paraburkholderia sp. UYCP14C, a rhizobium strain isolated from root nodules of Calliandra parvifolia. Microbiol Resour Announc 8 (16):e00173–00119. doi:https://doi.org/10.1128/mra.00173-19

  40. Sheu S-Y, Chou J-H, Bontemps C, Elliott GN, Gross E, James EK, Sprent JI, Young JPW, Chen W-M (2012) Burkholderia symbiotica sp. nov., isolated from root nodules of Mimosa spp. native to north-east Brazil. Int J Syst Evol Micr 62(Pt_9):2272–2278. https://doi.org/10.1099/ijs.0.037408-0

    Article  CAS  Google Scholar 

  41. Sprent JI, Ardley JK, James EK (2013) From north to south: a latitudinal look at legume nodulation processes. South African J Bot 89:31–41. https://doi.org/10.1016/j.sajb.2013.06.011

    Article  Google Scholar 

  42. Pereira-Gómez M, Ríos C, Zabaleta M, Lagurara P, Galvalisi U, Iccardi P, Azziz G, Battistoni F, Platero R, Fabiano E (2020) Native legumes of the Farrapos protected area in Uruguay establish selective associations with rhizobia in their natural habitat. Soil Biol Biochem:107854. https://doi.org/10.1016/j.soilbio.2020.107854

  43. Gross E, Cordeiro L, Caetano FH (2002) Nodule ultrastructure and initial growth of Anadenanthera peregrina (L.) Speg. var. falcata (Benth.) Altschul plants infected with rhizobia. Annals of Botany 90(2):175–183. https://doi.org/10.1093/aob/mcf184

    Article  PubMed Central  Google Scholar 

  44. Elliott GN, Chen W-M, Chou J-H, Wang H-C, Sheu S-Y, Perin L, Reis VM, Moulin L, Simon MF, Bontemps C, Sutherland JM, Bessi R, De Faria SM, Trinick MJ, Prescott AR, Sprent JI, James EK (2007) Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta. New Phytologist 173(1):168–180. https://doi.org/10.1111/j.1469-8137.2006.01894.x

    Article  CAS  PubMed  Google Scholar 

  45. Perrineau M-M, Galiana A, de Faria SM, Bena G, Duponnois R, Reddell P, Prin Y (2012) Monoxenic nodulation process of Acacia mangium (Mimosoideae, Phyllodineae) by Bradyrhizobium sp. Symbiosis 56(2):87–95. https://doi.org/10.1007/s13199-012-0163-5

    Article  Google Scholar 

  46. Choudhary S, Tak N, Bissa G, Chouhan B, Choudhary P, Sprent JI, James EK, Gehlot HS (2020) The widely distributed legume tree Vachellia (Acacia) nilotica subsp. indica is nodulated by genetically diverse Ensifer strains in India. Symbiosis 80(1):15–31. https://doi.org/10.1007/s13199-019-00658-8

  47. Sankhla IS, Tak N, Meghwal RR, Choudhary S, Tak A, Rathi S, Sprent JI, James EK, Gehlot HS (2017) Molecular characterization of nitrogen fixing microsymbionts from root nodules of Vachellia (Acacia) jacquemontii, a native legume from the Thar Desert of India. Plant Soil 410(1):21–40. https://doi.org/10.1007/s11104-016-2838-9

  48. Gehlot HS, Tak N, Kaushik M, Mitra S, Chen W-M, Poweleit N, Panwar D, Poonar N, Parihar R, Tak A, Sankhla IS, Ojha A, Rao SR, Simon MF, Reis Junior FBD, Perigolo N, Tripathi AK, Sprent JI, Young JPW, James EK, Gyaneshwar P (2013) An invasive Mimosa in India does not adopt the symbionts of its native relatives. Annals of Botany 112(1):179–196. https://doi.org/10.1093/aob/mct112

  49. Sprent JI, James EK (2007) Legume evolution: where do nodules and mycorrhizas fit in? Plant Physiol 144(2):575–581. https://doi.org/10.1104/pp.107.096156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Platero R, James EK, Rios C, Iriarte A, Sandes L, Zabaleta M, Battistoni F, Fabiano E (2016) Novel Cupriavidus strains isolated from root nodules of native Uruguayan Mimosa species. App Environ Micr 82(11):3150–3164. https://doi.org/10.1128/aem.04142-15

    Article  CAS  Google Scholar 

  51. Ferguson Brett J, Mens C, Hastwell April H, Zhang M, Su H, Jones Candice H, Chu X, Gresshoff Peter M (2019) Legume nodulation: the host controls the party. Plant, Cell & Environment 42(1):41–51. https://doi.org/10.1111/pce.13348

    Article  CAS  Google Scholar 

  52. de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E, Kuzmanović N, Lassalle F, Lindström K, Mhamdi R, Martínez-Romero E, Moulin L, Mousavi SA, Nesme X, Peix A, Puławska J, Steenkamp E, Stępkowski T, Tian C-F, Vinuesa P, Wei G, Willems A, Zilli J, Young P (2019) Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Micr 69(7):1852–1863. https://doi.org/10.1099/ijsem.0.003426

    Article  CAS  Google Scholar 

  53. De Meyer SE, De Beuf K, Vekeman B, Willems A (2015) A large diversity of non-rhizobial endophytes found in legume root nodules in Flanders (Belgium). Soil Biol Biochem 83:1–11. https://doi.org/10.1016/j.soilbio.2015.01.002

    Article  CAS  Google Scholar 

  54. De Meyer SE, Cnockaert M, Moulin L, Howieson JG, Vandamme P (2018) Symbiotic and non-symbiotic Paraburkholderia isolated from South African Lebeckia ambigua root nodules and the description of Paraburkholderia fynbosensis sp. nov. Int J Syst Evol Micr 68(8):2607–2614. https://doi.org/10.1099/ijsem.0.002884

    Article  CAS  Google Scholar 

  55. Santini AC, Santos HRM, Gross E, Corrêa RX (2013) Genetic diversity of Burkholderia (Proteobacteria) species from the Caatinga and Atlantic rainforest biomes in Bahia, Brazil. Genet Mol Res 12(1):655–664. https://doi.org/10.4238/2013.march.11.13

    Article  CAS  PubMed  Google Scholar 

  56. Bontemps C, Rogel MA, Wiechmann A, Mussabekova A, Moody S, Simon MF, Moulin L, Elliott GN, Lacercat-Didier L, Dasilva C, Grether R, Camargo-Ricalde SL, Chen W, Sprent JI, Martínez-Romero E, Young JPW, James EK (2016) Endemic Mimosa species from Mexico prefer alphaproteobacterial rhizobial symbionts. New Phytologist 209(1):319–333. https://doi.org/10.1111/nph.13573

  57. Elliott GN, Chou J-H, Chen W-M, Bloemberg GV, Bontemps C, Martínez-Romero E, Velázquez E, Young JPW, Sprent JI, James EK (2009) Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N-limited conditions. Environ Microbiol 11(4):762–778. https://doi.org/10.1111/j.1462-2920.2008.01799.x

    Article  PubMed  Google Scholar 

  58. Melkonian R, Moulin L, Béna G, Tisseyre P, Chaintreuil C, Heulin K, Rezkallah N, Klonowska A, Gonzalez S, Simon M, Chen W-M, James EK, Laguerre G (2014) The geographical patterns of symbiont diversity in the invasive legume Mimosa pudica can be explained by the competitiveness of its symbionts and by the host genotype. Environ Microbiol 16(7):2099–2111. https://doi.org/10.1111/1462-2920.12286

    Article  PubMed  Google Scholar 

  59. Baraúna AC, Rouws LFM, Simoes-Araujo JL, dos Reis Junior FB, Iannetta PPM, Maluk M, Goi SR, Reis VM, James EK, Zilli JE (2016) Rhizobium altiplani sp. nov., isolated from effective nodules on Mimosa pudica growing in untypically alkaline soil in central Brazil. Int J Syst Evol Micr 66(10):4118–4124. https://doi.org/10.1099/ijsem.0.001322

    Article  CAS  Google Scholar 

  60. De Meyer SE, Briscoe L, Martínez-Hidalgo P, Agapakisde-los Santos, Seshadri, Reeve, Weinstock, O’Hara, Howieson, Hirsch CMPERWGGJGAM (2016) Symbiotic Burkholderia species show diverse arrangements of nif/fix and nod genes and lack typical high-affinity cytochrome cbb3 oxidase genes. Molecular Plant-Microbe Interactions 29(8):609–619. https://doi.org/10.1094/mpmi-05-16-0091-r

  61. Andrews M, De Meyer S, James EK, Stępkowski T, Hodge S, Simon MF, Young JPW (2018) Horizontal transfer of symbiosis genes within and between rhizobial genera: occurrence and importance. Genes 9(7):321

    Article  PubMed Central  Google Scholar 

  62. Dludlu MN, Chimphango SBM, Walker G, Stirton CH, Muasya AM (2018) Horizontal gene transfer among rhizobia of the core cape subregion of southern Africa. South African J Bot 118:342–352. https://doi.org/10.1016/j.sajb.2018.02.406

    Article  CAS  Google Scholar 

  63. de Faria SM, de Carvalho Balieiro F, Paula RR, Santos FM, Zilli JE (2020) Biological nitrogen fixation (BNF) in mixed-forest plantations. In: Bran Nogueira Cardoso EJ, Gonçalves JLdM, Balieiro FdC, Franco AA (eds) Mixed plantations of eucalyptus and leguminous trees: soil, microbiology and ecosystem services. Springer International Publishing, Cham, pp 103–135. https://doi.org/10.1007/978-3-030-32365-3_6

Download references

Acknowledgements

We thank the CNPq (Brazilian National Council for Scientific and Technological Development) for productivity grants awarded to some of the authors and financial support of projects, especially INCT Plant Growth-Promoting Microorganisms for Agricultural Sustainability and Environmental Responsibility (CNPq 465133/2014-2, Fundação Araucária-STI-043/2019, CAPES).

Funding

This study is funded by the Embrapa, CNPq (Brazilian National Council for Scientific and Technological Development) and CAPES (Coordination of Superior Level Staff Improvement).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the study and manuscript preparation.

Corresponding author

Correspondence to Jerri Édson Zilli.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All authors consent to participate in the paper.

Consent for publication

All authors consent to participate in the paper publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 395 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zilli, J.É., de Moraes Carvalho, C.P., de Matos Macedo, A.V. et al. Nodulation of the neotropical genus Calliandra by alpha or betaproteobacterial symbionts depends on the biogeographical origins of the host species. Braz J Microbiol 52, 2153–2168 (2021). https://doi.org/10.1007/s42770-021-00570-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00570-8

Keywords

Navigation