Skip to main content

Advertisement

Log in

Cacao pod husk for citric acid production under solid state fermentation using response surface method

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Indonesia is one of the biggest cocoa producers in the world with total production 240,000 tons by 2019. Meanwhile, we have about 400,000 tons cocoa pod husk (CPH). CPH biomass is a serious problem in Indonesia, but at the same time, it is also an important, challenging, and environmental renewable source for bioproduction. Therefore, it becomes a focus of interest in this research aiming to utilize of CPH as renewable substrate for citric acid production. The solid-state fermentation (SSF) approach was applied to CPH using Aspergillus niger Tiegh F359 for produce citric acid. Response surface methodology (RSM) was used to optimize the citric acid production with water concentration, nitrogen concentration, and fermentation time as variable factors. Around 7530 ppm citric acid was produced from 1 g CPH as a carbon source. Entirely, this study has succeeded in optimizing citric acid production by using SSF using A. niger Tiegh F359 and providing a fundamental study for CPH as low-cost renewable substrate for bioproduct production and future endeavors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Show PL, Oladele KO, Siew QY, Aziz Zakry FA, Lan JCW, Ling TC (2015) Overview of citric acid production from Aspergillus niger. Front Life Sci 8(3):271–283. https://doi.org/10.1080/21553769.2015.1033653

    Article  Google Scholar 

  2. Ciriminna R, Meneguzzo F, Delisi R, Pagliaro M (2017) Citric acid: emerging applications of key biotechnology industrial product. Chem Cent J 11(1):1–9. https://doi.org/10.1186/s13065-017-0251-y

    Article  Google Scholar 

  3. Angumeenal AR, Venkappayya D (2013) An overview of citric acid production. LWT - Food Sci Technol 50(2):367–370. https://doi.org/10.1016/j.lwt.2012.05.016

    Article  Google Scholar 

  4. Ashy MA, Abou-Zeid AA (1982) Production of citric acid. Zentralbl Mikrobiol 137(5):395–405. https://doi.org/10.1016/s0232-4393(82)80018-8

    Article  Google Scholar 

  5. Chanukya BS, Prakash M, Rastogi NK (2017) Extraction of citric acid from fruit juices using supported liquid membrane. J Food Process Preserv 41(1):1–10. https://doi.org/10.1111/jfpp.12790

    Article  Google Scholar 

  6. Ozdal M, Kurbanoglu EB (2019) Citric acid production by Aspergillus niger from agro-industrial by-products: molasses and chicken feather peptone. Waste Biomass Valor 10(3):631–640. https://doi.org/10.1007/s12649-018-0240-y

    Article  Google Scholar 

  7. Adeoye AO, Lateef A, Gueguim-kana EB (2015) Optimization of citric acid production using a mutant strain of Aspergillus niger on cassava peel substrate Biocatalysis and Agricultural Biotechnology Optimization of citric acid production using a mutant strain of Aspergillus niger on cassava peel subst. Biocatal Agric Biotechnol 4(4):568–574. https://doi.org/10.1016/j.bcab.2015.08.004

    Article  Google Scholar 

  8. Morgunov IG, Kamzolova SV, Lunina JN (2013) The citric acid production from raw glycerol by Yarrowia lipolytica yeast and its regulation. Appl Microbiol Biotechnol 97(16):7387–7397. https://doi.org/10.1007/s00253-013-5054-z

    Article  Google Scholar 

  9. Levinson WE, Kurtzman CP, Kuo TM (2007) Characterization of Yarrowia lipolytica and related species for citric acid production from glycerol. Enzyme Microb Technol 41(3):292–295. https://doi.org/10.1016/j.enzmictec.2007.02.005

    Article  Google Scholar 

  10. Anastassiadis S, Aivasidis A, Wandrey C (2002) Citric acid production by Candida strains under intracellular nitrogen limitation. Appl Microbiol Biotechnol 60(1–2):81–87. https://doi.org/10.1007/s00253-002-1098-1

    Article  Google Scholar 

  11. West TP (2013) Citric acid production by Candida species grown on a soy-based crude glycerol. Prep Biochem Biotechnol 43(6):601–611. https://doi.org/10.1080/10826068.2012.762929

    Article  Google Scholar 

  12. Chukwuemeka IC, Ethel OC, Kalu AD, Chukwuma N (2019) Citric acid production by Aspergillus niger using banana and plantain peels. GSC Biol Pharm Sci 8(2):015–021. https://doi.org/10.30574/gscbps.2019.8.2.0111

    Article  Google Scholar 

  13. Assadi MM, Nikkhah M (2002) Production of citric acid from date pulp by solid state fermentation. J Agric Sci Technol 4:119–125

    Google Scholar 

  14. Zhou PP, Meng J, Bao J (2017) Fermentative production of high titer citric acid from corn stover feedstock after dry dilute acid pretreatment and biodetoxification. Bioresour. Technol. 224(May 2018):563–572. https://doi.org/10.1016/j.biortech.2016.11.046

    Article  Google Scholar 

  15. Hennessey-Ramos L, Murillo-Arango W, Vasco-Correa J, Paz Astudillo IC (2021) Enzymatic extraction and characterization of pectin from cocoa pod husks (Theobroma cacao L.) using Celluclast® 1.5 L. Molecules 26(5):1473. https://doi.org/10.3390/molecules26051473

    Article  Google Scholar 

  16. Cristina L, Dias R, Castanho DM, Lúcia C, Petkowicz DO (2011) Cacao pod husks ( Theobroma cacao L .): composition and hot-water-soluble pectins. Ind Corp Prod 34:1173–1181. https://doi.org/10.1016/j.indcrop.2011.04.004

    Article  Google Scholar 

  17. Lotfy WA, Ghanem KM, El-Helow ER (2007) Citric acid production by a novel Aspergillus niger isolate: II. Optimization of process parameters through statistical experimental designs. Bioresour Technol 98(18):3470–3477. https://doi.org/10.1016/j.biortech.2006.11.032

    Article  Google Scholar 

  18. Dhillon GS, Brar SK, Verma M, Tyagi RD (2011) Recent advances in citric acid bio-production and recovery. Food Bioprocess Technol 4(4):505–529. https://doi.org/10.1007/s11947-010-0399-0

    Article  Google Scholar 

  19. Dwivedi G, Sharma MP (2015) Application of Box-Behnken design in optimization of biodiesel yield from Pongamia oil and its stability analysis. Fuel 145:256–262. https://doi.org/10.1016/j.fuel.2014.12.063

    Article  Google Scholar 

  20. Kumar A, Prasad B, Mishra IM (2007) Process parametric study for ethene carboxylic acid removal onto powder activated carbon using Box-Behnken design. Chem Eng Technol 30(7):932–937. https://doi.org/10.1002/ceat.200700084

    Article  Google Scholar 

  21. Park Y, Kang S, Lee J, Hong S, Kim S (2002) Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Appl Microbiol Biotechnol 58(6):761–766. https://doi.org/10.1007/s00253-002-0965-0

    Article  Google Scholar 

  22. Pangestu R, Amanah S, Juanssilfero AB, Yopi AB, Perwitasari U (2020) Response surface methodology for microwave-assisted extraction of pectin from cocoa pod husk (Theobroma cacao) mediated by oxalic acid. J Food Meas Charact 14(4):2126–2133. https://doi.org/10.1007/s11694-020-00459-4

    Article  Google Scholar 

  23. Majumder L et al (2010) Citric acid production by Aspergillus niger using molasses and pumpkin as substrates National Mushroom Development and Extension Centre, Savar, Dhaka, Bangladesh. Eur J Biol Sci 2(1):1–8

    Google Scholar 

  24. Soccol CR, Vandenberghe LPS, Rodrigues C (2006) New perspectives for citric acid production and application. Food Technol Biotechnol 44(2):141–149

    Google Scholar 

  25. Juanssilfero AB et al (2018) Effect of inoculum size on single-cell oil production from glucose and xylose using oleaginous yeast Lipomyces starkeyi effect of inoculum size on single-cell oil production from glucose and xylose using oleaginous yeast Lipomyces starkeyi. J Biosci Bioeng 125(6):695–702. https://doi.org/10.1016/j.jbiosc.2017.12.020

    Article  Google Scholar 

  26. Saavedra-Leos Z, Leyva-Porras C, Araujo-Díaz SB, Toxqui-Terán A, Borrás-Enríquez AJ (2015) Technological application of maltodextrins according to the degree of polymerization. Molecules 20(12):21067–21081. https://doi.org/10.3390/molecules201219746

    Article  Google Scholar 

  27. Patyshakuliyeva A, Arentshorst M, Allijn IE, Ram AFJ, De Vries RP, Benoit I (2016) Improving cellulase production by Aspergillus niger using adaptive evolution. Biotechnol Lett 38(6):969–974. https://doi.org/10.1007/s10529-016-2060-0

    Article  Google Scholar 

  28. Mansur D, Tago T, Masuda T, Abimanyu H (2014) ScienceDirect conversion of cacao pod husks by pyrolysis and catalytic reaction to produce useful chemicals. Biomass Bioenergy 1–11. https://doi.org/10.1016/j.biombioe.2014.03.065

  29. Pal A, Khanum F (2010) Bioresource Technology Production and extraction optimization of xylanase from Aspergillus niger DFR-5 through solid-state-fermentation. Bioresour Technol 101(19):7563–7569. https://doi.org/10.1016/j.biortech.2010.04.033

    Article  Google Scholar 

  30. Ottenheim C, Verdejo C, Zimmermann W, Wu JC (2014) Hemicellulase production by Aspergillus niger DSM 26641 in hydrothermal palm oil empty fruit bunch hydrolysate and transcriptome analysis. J Biosci Bioeng 118(6):696–701. https://doi.org/10.1016/j.jbiosc.2014.05.014

  31. El Enshasy HA, Elsayed EA, Suhaimi N, Abd Malek R, Esawy M (2018) Bioprocess optimization for pectinase production using Aspergillus niger in a submerged cultivation system. BMC Biotechnology 18(1):1–13. https://doi.org/10.1186/s12896-018-0481-7

  32. Martin SM, Wilson PW (1951) Uptake of C14O2 by Aspergillus niger in the formation of citric acid. Arch Biochem Biophys 32(1):150–157. https://doi.org/10.1016/0003-9861(51)90248-2

  33. Nadeem A, Syed Q, Baig S, Irfan M, Nadeem M (2010) Enhanced production of citric acid by Aspergillus niger M-101 using lower alcohols. Turk J Biochem 35(1):7–13

    Google Scholar 

  34. Najafpour GD (2007) Material and elemental balance. Biochem Eng Biotechnol 228–251. https://doi.org/10.1016/b978-044452845-2/50009-4

  35. Max B, Salgado JM, Rodríguez N, Cortés S, Converti A, Domínguez JM (2010) Biotechnological production of citric acid. Braz J Microbiol 41(4):862–875. https://doi.org/10.1590/S1517-83822010000400005

    Article  Google Scholar 

  36. Palmonari A et al (2020) Short communication : characterization of molasses chemical composition. J Dairy Sci 10(10). https://doi.org/10.3168/jds.2019-17644

  37. Vinayavekhin N (2020) Aspergillus niger upregulated glycerolipid metabolism and ethanol utilization pathway under ethanol stress. (September 2019):1–21. https://doi.org/10.1002/mbo3.948.

  38. Krishna C (2005) Solid-state fermentation systems—an overview. Crit Rev Biotechnol 25(1):1–30. https://doi.org/10.1080/07388550590925383

    Article  Google Scholar 

  39. Pandey A, Ashakumary L, Selvakumar P, Vijayalakshmi KS (1994) Influence of water activity on growth and activity of Aspergillus niger for glycoamylase production in solid-state fermentation. World J Microbiol Biotechnol 10(4):485–486. https://doi.org/10.1007/BF00144481

    Article  Google Scholar 

  40. Ferreira P, Lopes M, Mota M, Belo I (2016) Oxygen transfer rate and pH as major operating parameters of citric acid production from glycerol by Yarrowia lipolytica W29 and CBS 2073. Chem Pap 70(7):869–876. https://doi.org/10.1515/chempap-2016-0024

    Article  Google Scholar 

  41. Papagianni M (2007) Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling. Biotechnol Adv 25:244–263. https://doi.org/10.1016/j.biotechadv.2007.01.002

    Article  Google Scholar 

Download references

Funding

This research was supported by Ministry of Research and Technology of Republic Indonesia in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urip Perwitasari.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perwitasari, U., Agustina, N.T., Pangestu, R. et al. Cacao pod husk for citric acid production under solid state fermentation using response surface method. Biomass Conv. Bioref. 13, 7165–7173 (2023). https://doi.org/10.1007/s13399-021-01690-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01690-9

Keywords

Navigation