Skip to main content
Log in

Estimation and diagnostic for partially linear models with first-order autoregressive skew-normal errors

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Estimation and diagnostic procedures for partially linear models with first-order autoregressive [AR(1)] skew-normal errors are proposed in this paper. An EM iterative process with analytic expressions for the M and E-steps, which combines back-fitting and Newton–Raphson algorithms, is developed for the parameter estimation. A linear smoother for the estimation of the effective degrees of freedom concerning the nonparametric component is derived from the iterative process. Local influence analysis is developed based on the conditional expectation of the complete-data log-likelihood function, used in the EM algorithm. A simulation study is also conducted to evaluate the efficiency of the EM algorithm. Finally, the methodology developed through the paper is illustrated with a real data set on daily ozone concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atkinson A (1981) Two graphical displays for outlying and influential observations in regression. Biometrika 68:13

    Article  MathSciNet  Google Scholar 

  • Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat 12:171–178

    MathSciNet  MATH  Google Scholar 

  • Bondon P (2009) Estimation of autoregressive models with epsilon-skew-normal innovations. J Multivar Anal 100:1761–1776

    Article  MathSciNet  Google Scholar 

  • Breiman L, Friedman JH (1985) Estimating optimal transformations for multiple regression and correlation (with discussion). J Am Stat Assoc 80(391):580–619

    Article  Google Scholar 

  • Cao CZ, Lin JG, Zhu LX (2010) Heteroscedasticity and/or autocorrelation diagnostics in nonlinear models with ar(1) and symmetrical errors. Stat Pap 51:813–836

    Article  MathSciNet  Google Scholar 

  • Cook RD (1986) Assessment of local influence. J R Stat Soc Ser B 48:133–169

    MathSciNet  MATH  Google Scholar 

  • Cook RD, Weisberg S (1982) Residuals and influence in regression. Chapman and Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • de Boor C (2001) A practical guide to spline, revised. Springer, Berlin

    MATH  Google Scholar 

  • Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39:1–38

    MathSciNet  MATH  Google Scholar 

  • Dunn PK, Smyth GK (1996) Randomized quantile residuals. J Comput Graph Stat 5(3):236–244

    Google Scholar 

  • Eilers PHC, Marx BD (1996) Flexible smoothing with B-splines and penalties. Stat Sci 11(2):89–121

    Article  MathSciNet  Google Scholar 

  • Ferreira CS, Bolfarine H, Lachos VH (2011) Skew scale mixtures of normal distributions: properties and estimation. Stat Methodol 8:154–171

    Article  MathSciNet  Google Scholar 

  • Ferreira CS, Paula GA (2017) Estimation and diagnostic for skew-normal partially linear models. J Appl Stat 44(16):3033–3053

    Article  MathSciNet  Google Scholar 

  • Ferreira G, Castro LM, Lachos VH, Dias R (2013) Bayesian modeling of autoregressive partial linear models with scale mixture of normal errors. J Appl Stat 40(8):1796–1816

    Article  MathSciNet  Google Scholar 

  • Ferreira JT, Steel MFJ (2006) A constructive representation of univariate skewed distributions. J Am Stat Assoc 101:823–829

    Article  MathSciNet  Google Scholar 

  • Genton MG (2004) Skew-elliptical distributions and their applications: a journey beyond normality. Chapman and Hall, London

    Book  Google Scholar 

  • Green PJ (1987) Penalized likelihood for general semi-parametric regression models. Int Stat Rev 55:245–259

    Article  MathSciNet  Google Scholar 

  • Green PJ (1990) On use of the EM algorithm for penalized likelihood estimation. J R Stat Soc Ser B 52:443–452

    MathSciNet  MATH  Google Scholar 

  • Greene WH (2012) Econometric analysis. 7th edn. Prentice Hall, Upper Saddle River

  • Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, London

    MATH  Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 1. Wiley, New York

    MATH  Google Scholar 

  • Lee SY, Xu L (2004) Influence analysis of nonlinear mixed-effects models. Comput Stat Data Anal 45:321–341

    Article  Google Scholar 

  • Liu S (2004) On diagnostics in conditionally heteroscedastic time series models under elliptical distributions. J Appl Probab 41A:393–405

    Article  MathSciNet  Google Scholar 

  • Lu B, Song X (2006) Local influence of multivariate Probit latent variable models. J Multivar Anal 97:1783–1798

    Article  MathSciNet  Google Scholar 

  • Nadarajah S, Kotz S (2003) Skewed distributions generated by the normal kernel. Stat Probab Lett 65:269–277

    Article  MathSciNet  Google Scholar 

  • Paula GA, Medeiros MJ, Vilca-Labra FE (2009) Influence diagnostics for linear models with first-order autoregressive elliptical errors. Stat Probab Lett 79:339–346

    Article  MathSciNet  Google Scholar 

  • R Core Team (2019) R: A language and environment for statistical computing. In: R foundation for statistical computing, Vienna, Austria. http://www.R-project.org/

  • Relvas CEM, Paula GA (2016) Partially linear models with first-order autoregressive symmetric errors. Stat Pap 57:795–825

    Article  MathSciNet  Google Scholar 

  • Sahu SK, Dey DK, Branco MD (2003) A new class of multivariate distributions with applications to Bayesian regression models. Can J Stat 31:129–150

    Article  MathSciNet  Google Scholar 

  • Segal MR, Bacchetti P, Jewell NP (1994) Variances for maximum penalized likelihood estimates obtained via the EM algorithm. J R Stat Soc Ser B 56:345–352

    MATH  Google Scholar 

  • Sharafi M, Nematollahi AR (2016) Ar(1) model with skew-normal innovations. Metrika 79:1011–1029

    Article  MathSciNet  Google Scholar 

  • Wood S (2017) Generalized additive models, an introduction with R, 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  • Zhu H, Lee S (2001) Local influence for incomplete-data models. J R Stat Soc Ser B 63:111–126

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank two anonymous referees for comments that improved this manuscript. This work was partially supported by CNPq-Brazil and FAPEMIG-Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clécio da Silva Ferreira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Approximate standard errors

The variance–covariance matrix of the \(\widehat{\varvec{\theta }}\), corresponding to the inverse of the observed information matrix, is obtained by treating the penalized likelihood as a usual likelihood Segal et al. (1994). Given the observed log-likelihood function \(\ell (\varvec{\theta })\) in (5), the correspondence penalized log-likelihood function of \(\varvec{\theta }=(\varvec{\beta }^\top ,\varvec{\gamma }^\top ,\sigma ^2,\delta ,\rho )^\top \) is of the form

$$\begin{aligned} \ell _p(\varvec{\theta })=\ell (\varvec{\theta })-\frac{\alpha }{2}\varvec{\gamma }^\top \mathbf {K}\varvec{\gamma }. \end{aligned}$$
(15)

The observed information matrix for \(\varvec{\theta }\) may be written as

$$\begin{aligned} \mathbf {I}_{\varvec{\theta }\varvec{\theta }}=-\displaystyle \frac{\partial ^2 \ell _{p}(\varvec{\theta })}{\partial \varvec{\theta }\partial \varvec{\theta }^\top } \end{aligned}$$

with elements

$$\begin{aligned}&\frac{\partial ^2 \ell _{p}(\varvec{\theta })}{\partial \varvec{\beta }\partial \varvec{\beta }^\top }=\sum ^n_{i=1}\left( -\frac{\sigma ^2}{\delta ^2}+W_\Phi '(B_i)\right) \frac{\partial B_i}{\partial \varvec{\beta }}\frac{\partial B_i}{\partial \varvec{\beta }^\top },\\&\frac{\partial ^2 \ell _{p}(\varvec{\theta })}{\partial \varvec{\gamma }\partial \varvec{\beta }^\top }=\sum ^n_{i=1}\left( -\frac{\sigma ^2}{\delta ^2}+W_\Phi '(B_i)\right) \frac{\partial B_i}{\partial \varvec{\gamma }}\frac{\partial B_i}{\partial \varvec{\beta }^\top },\\&\frac{\partial ^2 \ell _{p}(\varvec{\theta })}{\partial \varvec{\gamma }\partial \varvec{\gamma }^\top }=\sum ^n_{i=1}\left( -\frac{\sigma ^2}{\delta ^2}+W_\Phi '(B_i)\right) \frac{\partial B_i}{\partial \varvec{\gamma }}\frac{\partial B_i}{\partial \varvec{\gamma }^\top }-\alpha \mathbf {K},\\&\frac{\partial ^2 \ell _{p}(\varvec{\theta })}{\partial \rho ^2}=\sum ^n_{i=1}\left( -\frac{\sigma ^2}{\delta ^2}+W_\Phi '(B_i)\right) \left( \frac{\partial B_i}{\partial \rho }\right) ^2,\\&\frac{\partial ^2 \ell _{p}(\varvec{\theta })}{\partial \rho \partial \varvec{\beta }}=\sum ^n_{i=1}\left[ \left( -\frac{\sigma ^2}{\delta ^2}+W_\Phi '(B_i)\right) \frac{\partial B_i}{\partial \rho }\frac{\partial B_i}{\partial \varvec{\beta }} + \left( -\frac{\sigma ^2}{\delta ^2}B_i+W_\Phi (B_i)\right) \frac{\partial ^2 B_i}{\partial \rho \partial \varvec{\beta }}\right] ,\\&\frac{\partial ^2 \ell _{p}(\varvec{\theta })}{\partial \rho \partial \varvec{\gamma }}=\sum ^n_{i=1}\left[ \left( -\frac{\sigma ^2}{\delta ^2}+W_\Phi '(B_i)\right) \frac{\partial B_i}{\partial \rho }\frac{\partial B_i}{\partial \varvec{\gamma }} + \left( -\frac{\sigma ^2}{\delta ^2}B_i+W_\Phi (B_i)\right) \frac{\partial ^2 B_i}{\partial \rho \partial \varvec{\gamma }}\right] ,\\&\frac{\partial ^2 \ell _{p}(\varvec{\theta })}{\partial \sigma ^2\partial \varvec{\beta }}=\sum ^n_{i=1}\left[ \left( -\frac{1}{\delta ^2}B_i-\frac{\sigma ^2}{\delta ^2}\frac{\partial B_i}{\partial \sigma ^2}+W_\Phi '(B_i)\frac{\partial B_i}{\partial \sigma ^2}\right) \frac{\partial B_i}{\partial \varvec{\beta }} + \left( -\frac{\sigma ^2}{\delta ^2}B_i+W_\Phi (B_i)\right) \frac{\partial ^2 B_i}{\partial \sigma ^2\partial \varvec{\beta }}\right] ,\\&\frac{\partial ^2 \ell _{p}(\varvec{\theta })}{\partial \sigma ^2\partial \varvec{\gamma }}=\sum ^n_{i=1}\left[ \left( -\frac{1}{\delta ^2}B_i-\frac{\sigma ^2}{\delta ^2}\frac{\partial B_i}{\partial \sigma ^2}+W_\Phi '(B_i)\frac{\partial B_i}{\partial \sigma ^2}\right) \frac{\partial B_i}{\partial \varvec{\gamma }} + \left( -\frac{\sigma ^2}{\delta ^2}B_i+W_\Phi (B_i)\right) \frac{\partial ^2 B_i}{\partial \sigma ^2\partial \varvec{\gamma }}\right] ,\\&\frac{\partial ^2 \ell _{p}(\varvec{\theta })}{\partial \sigma ^2\partial \rho }=\sum ^n_{i=1}\left[ \left( -\frac{1}{\delta ^2}B_i-\frac{\sigma ^2}{\delta ^2}\frac{\partial B_i}{\partial \sigma ^2}+W_\Phi '(B_i)\frac{\partial B_i}{\partial \sigma ^2}\right) \frac{\partial B_i}{\partial \rho } + \left( -\frac{\sigma ^2}{\delta ^2}B_i+W_\Phi (B_i)\right) \frac{\partial ^2 B_i}{\partial \sigma ^2\partial \rho }\right] ,\\&\frac{\partial ^2 \ell _{p}(\varvec{\theta })}{\partial \delta \partial \varvec{\beta }}=\sum ^n_{i=1}\left[ \left( \frac{2\sigma ^2}{\delta ^3}B_i-\frac{\sigma ^2}{\delta ^2}\frac{\partial B_i}{\partial \delta }+W_\Phi '(B_i)\frac{\partial B_i}{\partial \delta }\right) \frac{\partial B_i}{\partial \varvec{\beta }} + \left( -\frac{\sigma ^2}{\delta ^2}B_i+W_\Phi (B_i)\right) \frac{\partial ^2 B_i}{\partial \delta \partial \varvec{\beta }}\right] ,\\&\frac{\partial ^2 \ell _{p}(\varvec{\theta })}{\partial \delta \partial \varvec{\gamma }}=\sum ^n_{i=1}\left[ \left( \frac{2\sigma ^2}{\delta ^3}B_i-\frac{\sigma ^2}{\delta ^2}\frac{\partial B_i}{\partial \delta }+W_\Phi '(B_i)\frac{\partial B_i}{\partial \delta }\right) \frac{\partial B_i}{\partial \varvec{\gamma }} + \left( -\frac{\sigma ^2}{\delta ^2}B_i+W_\Phi (B_i)\right) \frac{\partial ^2 B_i}{\partial \delta \partial \mathbf {f}}\right] ,\\&\frac{\partial ^2 \ell _{p}(\varvec{\theta })}{\partial \delta \partial \rho }=\sum ^n_{i=1}\left[ \left( \frac{2\sigma ^2}{\delta ^3}B_i-\frac{\sigma ^2}{\delta ^2}\frac{\partial B_i}{\partial \delta }+W_\Phi '(B_i)\frac{\partial B_i}{\partial \delta }\right) \frac{\partial B_i}{\partial \rho } + \left( -\frac{\sigma ^2}{\delta ^2}B_i+W_\Phi (B_i)\right) \frac{\partial ^2 B_i}{\partial \delta \partial \rho }\right] , \end{aligned}$$
$$\begin{aligned} \frac{\partial ^2 \ell _{p}(\varvec{\theta })}{\partial \sigma ^4}= & {} \frac{n}{2(\sigma ^2+\delta ^2)^2}-\frac{1}{\delta ^2}\sum ^n_{i=1}B_i\frac{\partial B_i}{\partial \sigma ^2}\\&+ \sum ^n_{i=1}\left[ \left( -\frac{1}{\delta ^2}B_i-\frac{\sigma ^2}{\delta ^2}\frac{\partial B_i}{\partial \sigma ^2}+W_\Phi '(B_i)\frac{\partial B_i}{\partial \sigma ^2}\right) \frac{\partial B_i}{\partial \sigma ^2} \right. \\&\left. + \left( -\frac{\sigma ^2}{\delta ^2}B_i+W_\Phi (B_i)\right) \frac{\partial ^2 B_i}{\partial \sigma ^4}\right] , \end{aligned}$$
$$\begin{aligned} \frac{\partial ^2 \ell _{p}(\varvec{\theta })}{\partial \delta \partial \sigma ^2}= & {} \frac{n\delta }{(\sigma ^2+\delta ^2)^2}+\sum ^n_{i=1}\left( \frac{1}{\delta ^3}B_i^2-\frac{1}{\delta ^2}B_i\frac{\partial B_i}{\partial \delta }\right) \\&+\sum ^n_{i=1}\left[ \left( \frac{2\sigma ^2}{\delta ^3}B_i-\frac{\sigma ^2}{\delta ^2}\frac{\partial B_i}{\partial \delta }+W_\Phi '(B_i)\frac{\partial B_i}{\partial \delta }\right) \frac{\partial B_i}{\partial \sigma ^2}\right. \\&\left. + \left( -\frac{\sigma ^2}{\delta ^2}B_i+W_\Phi (B_i)\right) \frac{\partial ^2 B_i}{\partial \delta \partial \sigma ^2}\right] , \end{aligned}$$
$$\begin{aligned} \frac{\partial ^2 \ell _{p}(\varvec{\theta })}{\partial \delta ^2}= & {} -\frac{n(\sigma ^2-\delta ^2)}{(\sigma ^2+\delta ^2)^2}+\frac{\sigma ^2}{\delta ^3}\sum ^n_{i=1}\left( -\frac{3}{\delta }B_i^2+2B_i\frac{\partial B_i}{\partial \delta }\right) \\&+\sum ^n_{i=1}\left[ \left( \frac{2\sigma ^2}{\delta ^3}B_i-\frac{\sigma ^2}{\delta ^2}\frac{\partial B_i}{\partial \delta }+W_\Phi '(B_i)\frac{\partial B_i}{\partial \delta }\right) \frac{\partial B_i}{\partial \delta } \right. \\&\left. + \left( -\frac{\sigma ^2}{\delta ^2}B_i+W_\Phi (B_i)\right) \frac{\partial ^2 B_i}{\partial \delta ^2}\right] , \end{aligned}$$

where \(W_\Phi '(x)=-W_\Phi (x)(x+W_\Phi (x))\). The first and second derivatives of \(B_i\), \(i=1,\ldots ,n\), in relation to \(\varvec{\theta }\) are given by

$$\begin{aligned} \frac{\partial B_i}{\partial \varvec{\beta }}= & {} -\frac{\delta }{\sigma (\sigma ^2+\delta ^2)^{1/2}}(\mathbf {x}_i-\rho \mathbf {x}_{i-1}),\\ \frac{\partial B_i}{\partial \varvec{\gamma }}= & {} -\frac{\delta }{\sigma (\sigma ^2+\delta ^2)^{1/2}}(\mathbf {n}_i-\rho \mathbf {n}_{i-1}),\\ \frac{\partial B_i}{\partial \rho }= & {} -\frac{\delta }{\sigma (\sigma ^2+\delta ^2)^{1/2}}(y_{i-1}-\mu _{i-1}),\\ \frac{\partial B_i}{\partial \sigma ^2}= & {} -\frac{\delta (2\sigma ^2+\delta ^2)}{2\sigma ^3(\sigma ^2+\delta ^2)^{3/2}}(y_i-\xi _i+b\delta ),\\ \frac{\partial B_i}{\partial \delta }= & {} \frac{\sigma ^2(y_i-\xi _i+b\delta )+ b\delta (\sigma ^2+\delta ^2)}{\sigma (\sigma ^2+\delta ^2)^{3/2}}\\ \frac{\partial ^2 B_i}{\partial \varvec{\beta }\partial \beta ^\top }= & {} \frac{\partial ^2 B_i}{\partial \varvec{\gamma }\partial \beta ^\top }=\frac{\partial ^2 B_i}{\partial \varvec{\gamma }\partial \varvec{\gamma }^\top }=\mathbf {0},\\ \frac{\partial ^2 B_i}{\partial \rho ^2}= & {} 0,\\ \frac{\partial ^2 B_i}{\partial \rho \partial \varvec{\beta }}= & {} \frac{\delta }{\sigma (\sigma ^2+\delta ^2)^{1/2}}\mathbf {x}_{i-1},\\ \frac{\partial ^2 B_i}{\partial \rho \partial \varvec{\gamma }}= & {} \frac{\delta }{\sigma (\sigma ^2+\delta ^2)^{1/2}}\mathbf {n}_{i-1}\\ \frac{\partial ^2 B_i}{\partial \sigma ^2\partial \varvec{\beta }}= & {} \frac{\delta (2\sigma ^2+\delta ^2)}{2\sigma ^3(\sigma ^2+\delta ^2)^{3/2}}(\mathbf {x}_i-\rho \mathbf {x}_{i-1}),\\ \frac{\partial ^2 B_i}{\partial \sigma ^2\partial \varvec{\gamma }}= & {} \frac{\delta (2\sigma ^2+\delta ^2)}{2\sigma ^3(\sigma ^2+\delta ^2)^{3/2}}(\mathbf {n}_i-\rho \mathbf {n}_{i-1}),\\ \frac{\partial ^2 B_i}{\partial \sigma ^2\partial \rho }= & {} \frac{\delta (2\sigma ^2+\delta ^2)}{2\sigma ^3(\sigma ^2+\delta ^2)^{3/2}}(y_{i-1}-\mu _{i-1}),\\ \frac{\partial ^2 B_i}{\partial \delta \partial \varvec{\beta }}= & {} -\frac{\sigma }{(\sigma ^2+\delta ^2)^{3/2}}(\mathbf {x}_i-\rho \mathbf {x}_{i-1}),\\ \frac{\partial ^2 B_i}{\partial \delta \partial \varvec{\gamma }}= & {} -\frac{\sigma }{(\sigma ^2+\delta ^2)^{3/2}}(\mathbf {n}_i-\rho \mathbf {n}_{i-1}),\\ \frac{\partial ^2 B_i}{\partial \delta \partial \rho }= & {} -\frac{\sigma }{(\sigma ^2+\delta ^2)^{3/2}}(y_{i-1}-\mu _{i-1}),\\ \frac{\partial ^2 B_i}{\partial \sigma ^4}= & {} -\frac{\delta (y_i-\xi _i+b\delta )}{4\sigma ^5(\sigma ^2+\delta ^2)^{5/2}}[4\sigma ^2(\sigma ^2+\delta ^2)-3(2\sigma ^2+\delta ^2)^2],\\ \frac{\partial ^2 B_i}{\partial \sigma ^2\partial \delta }= & {} \frac{\sigma (\sigma ^2+\delta ^2)(y_i-\xi _i+2b\delta )-\frac{1}{2}\left[ \sigma ^2(y_i-\xi _i+b\delta )+b\delta (\sigma ^2+\delta ^2)\right] \left( \frac{\sigma ^2+\delta ^2}{\sigma }+3\sigma \right) }{\sigma ^2(\sigma ^2+\delta ^2)^{5/2}},\\ \frac{\partial ^2 B_i}{\partial \delta ^2}= & {} \frac{b(\sigma ^2+\delta ^2)(2\sigma ^2+3\delta ^2)-3\delta \left[ \sigma ^2(y_i-\xi _i+b\delta )+b\delta (\sigma ^2+\delta ^2)\right] }{\sigma (\sigma ^2+\delta ^2)^{5/2}}, \end{aligned}$$

where \(\mathbf {x}_0=\mathbf {n}_0=\mathbf {0}\) and \(y_0=\mu _0=0\).

Appendix B: Derivation of the matrices \(\mathbf {N}\) and \(\mathbf {K}\)

Let \(\mathbf {t}=(t_1,\ldots , t_m)\) and ndx the number of equidistant Knots desired by the user. It follows the commands in R (R Core Team 2019) for construction of the matrices \(\mathbf {N}\) and \(\mathbf {K}\):

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva Ferreira, C.d., Paula, G.A. & Lana, G.C. Estimation and diagnostic for partially linear models with first-order autoregressive skew-normal errors. Comput Stat 37, 445–468 (2022). https://doi.org/10.1007/s00180-021-01130-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-021-01130-2

Keywords

Navigation