Skip to main content
Log in

Fading regularization MFS algorithm for the Cauchy problem in anisotropic heat conduction

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The Cauchy problem in 2D and 3D steady-state anisotropic heat conduction is investigated for both exact and perturbed data, i.e. the numerical reconstruction of the missing temperature and normal heat flux on a part of the boundary from the knowledge of exact or noisy Cauchy data on the remaining and accessible boundary. This inverse Cauchy problem is solved by applying and adapting the fading regularization method, proposed by Cimetière et al.  [7, 8] for the steady-state isotropic heat conduction, to the anisotropic case. An appropriate stabilizing/regularizing stopping criterion for the resulting iterative algorithm is provided for each type of Cauchy data considered. The numerical implementation is realized for 2D and 3D homogeneous solids by using the meshless method of fundamental solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Özişik MN (1993) Heat conduction. Wiley, New York

    Google Scholar 

  2. Hadamard J (1923) Lectures on Cauchy problem in linear partial differential equations. Yale University Press, New Haven

    MATH  Google Scholar 

  3. Dennis BH, Dulikravich GS (1999) Simultaneous determination of temperatures, heat fluxes, deformations, and tractions on inaccessible boundaries. ASME J Heat Trans 121(3):537–545

    Article  Google Scholar 

  4. Kozlov VA, Mazya VG, Fomin AV (1991) An iterative method for solving the Cauchy problem for elliptic equations. Comput Math Math Phys 31:45–52

    MathSciNet  Google Scholar 

  5. Lesnic D, Elliott L, Ingham DB (1997) An iterative boundary element method for solving numerically the Cauchy problem for the Laplace equation. Eng Anal Bound Elem 20:123–133

    Article  Google Scholar 

  6. Hào DN, Lesnic D (2000) The Cauchy problem for Laplace’s equation via the conjugate gradient method. IMA J Appl Math 65:199–217

    Article  MathSciNet  Google Scholar 

  7. Cimetière A, Delvare F, Pons F (2000) Une méthode inverse à régularisation évanescente. Comptes Rendus de l’Académie des Sciences - Série IIb - Mécanique 328:639–644

    MATH  Google Scholar 

  8. Cimetière A, Delvare F, Jaoua M, Pons F (2001) Solution of the Cauchy problem using iterated Tikhonov regularization. Inverse Probl 17:553–570

    Article  MathSciNet  Google Scholar 

  9. Andrieux S, Baranger TN, Ben Abda A (2005) Solving Cauchy problems by minimizing an energy-like functional. Inverse Probl 34(1):81–101

    MathSciNet  MATH  Google Scholar 

  10. Ben Belgacem F, El Fekih H (2006) On Cauchy’s problem: I a variational Steklov-Poincare theory. Inverse Probl 21(6):1915–1936

    Article  MathSciNet  Google Scholar 

  11. Azaiez M, Ben Belgacem F, El Fekih H (2006) On Cauchy’s problem: II. Completion, regularization and approximation. Inverse Probl 22(4):1307–1336

    Article  MathSciNet  Google Scholar 

  12. Mera NS, Elliott L, Ingham DB, Lesnic D (2000) The boundary element solution for the Cauchy steady heat conduction problem in an anisotropic medium. Int J Numer Methods Eng 49:481–499

    Article  Google Scholar 

  13. Andrieux S, Ben Abda A, Baranger TN (2005) Data completion via an energy error functional. Comptes Rendus Mecanique 333:171–177

    Article  Google Scholar 

  14. Jin B, Zheng Y, Marin L (2006) The method of fundamental solutions for inverse boundary value problems associated with the steady-state heat conduction in anisotropic media. Int J Numer Methods Eng 65(11):1865–1891

    Article  MathSciNet  Google Scholar 

  15. Marin L (2009) An alternating iterative MFS algorithm for the Cauchy problem in two-dimensional anisotropic heat conduction. CMC Comput Mater Continua 12:71–100

    Google Scholar 

  16. Marin L (2010) Stable boundary and internal data reconstruction in two-dimensional anisotropic heat conduction Cauchy problems using relaxation procedures for an iterative MFS algorithm. CMC Comput Mater Continua 17(3):233–274

    Google Scholar 

  17. Hào DN, Johansson BT, Lesnic D, Hien PM (2010) A variational method and approximations of a Cauchy problem for elliptic equations. J Algorithms Comput Technol 4(1):89–119

    Article  MathSciNet  Google Scholar 

  18. Gu Y, Chen W, Zhang C, He X (2015) A meshless singular boundary method for three-dimensional inverse heat conduction problems in general anisotropic media. Int J Heat Mass Trans 84:91–102

    Article  Google Scholar 

  19. Gu Y, Chen W, Fu Z-J (2014) Singular boundary method for inverse heat conduction problems in general anisotropic media. Inverse Probl Sci Eng 22(6):889–909

    Article  MathSciNet  Google Scholar 

  20. Marin L (2020) Landweber-Fridman algorithms for the Cauchy problem in steady-state anisotropic heat conduction. Math Mech Solids 25(6):1340–1363

    Article  MathSciNet  Google Scholar 

  21. Marin L (2020) MFS-fading regularization method for inverse BVPs in anisotropic heat conduction. In: Alves CJS, Karageorghis A, Leitão VMA, Valtchev SS (eds) Advances on Trefftz methods and their applications. Springer, Cham, Switzerland, pp 121–138

    Chapter  Google Scholar 

  22. Voinea-Marinescu AP, Marin L, Delvare F (2021) BEM-fading regularization algorithm for Cauchy problems in 2D anisotropic heat conduction. Numer Algorithms. https://doi.org/10.1007/s11075-021-01090-0

    Article  Google Scholar 

  23. Delvare F, Cimetière A, Pons F (2002) An iterative boundary element method for Cauchy inverse problems. Comput Mech 28:291–302

    Article  MathSciNet  Google Scholar 

  24. Cimetière A, Delvare F, Jaoua M, Pons F (2002) An inversion method for harmonic functions reconstruction. Int J Therm Sci 41:509–516

    Article  Google Scholar 

  25. F. Delvare, J.L. Hanus, Complétion de données par méthode inverse en élasticité linéaire. In: 7eme Colloque National en Calcul de Structures. 17-20 May 2005, Giens, France

  26. Delvare F, Cimetière A, Hanus JL, Bailly P (2010) An iterative method for the Cauchy problem in linear elasticity with fading regularization effect. Comput Methods Appl Mech Eng 199(49–52):3336–3344

    Article  MathSciNet  Google Scholar 

  27. Marin L, Delvare F, Cimetière A (2016) Fading regularization MFS algorithm for inverse boundary value problems in two-dimensional linear elasticity. Int J Solids Struct 78–79:9–20

    Article  Google Scholar 

  28. Caillé L, Delvare F, Marin L, Michaux-Leblond N (2017) Fading regularization MFS algorithm for the Cauchy problem associated with the two-dimensional Helmholtz equation. Int J Solids Struct 125:122–133

    Article  Google Scholar 

  29. Caillé L, Marin L, Delvare F (2019) A meshless fading regularization algorithm for solving the Cauchy problem for the three-dimensional Helmholtz equation. Numer Algorithms 82(3):869–894

    Article  MathSciNet  Google Scholar 

  30. Steinbach O (2008) Numerical approximation methods for elliptic boundary value problems. Springer, New York

    Book  Google Scholar 

  31. Fairweather G, Karageorghis A (1998) The method of fundamental solutions for elliptic boundary value problems. Adv Comput Math 9:69–95

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by a grant of Ministry of Research and Innovation, CNCS–UEFISCDI, Project Number PN–III–P4–ID–PCE–2016–0083, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liviu Marin.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voinea–Marinescu, A., Marin, L. Fading regularization MFS algorithm for the Cauchy problem in anisotropic heat conduction. Comput Mech 68, 921–941 (2021). https://doi.org/10.1007/s00466-021-02052-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-02052-y

Keywords

Navigation