Skip to main content

Advertisement

Log in

The impact of mitochondria on cancer treatment resistance

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

The ability of cancer cells to develop treatment resistance is one of the primary factors that prevent successful treatment. Although initially thought to be dysfunctional in cancer, mitochondria are significant players that mediate treatment resistance. Literature indicates that cancer cells reutilize their mitochondria to facilitate cancer progression and treatment resistance. However, the mechanisms by which the mitochondria promote treatment resistance have not yet been fully elucidated.

Conclusions and perspectives

Here, we describe various means by which mitochondria can promote treatment resistance. For example, mutations in tricarboxylic acid (TCA) cycle enzymes, i.e., fumarate hydratase and isocitrate dehydrogenase, result in the accumulation of the oncometabolites fumarate and 2-hydroxyglutarate, respectively. These oncometabolites may promote treatment resistance by upregulating the nuclear factor erythroid 2–related factor 2 (Nrf2) pathway, inhibiting the anti-tumor immune response, or promoting angiogenesis. Furthermore, stromal cells can donate intact mitochondria to cancer cells after therapy to restore mitochondrial functionality and facilitate treatment resistance. Targeting mitochondria is, therefore, a feasible strategy that may dampen treatment resistance. Analysis of tumoral DNA may also be used to guide treatment choices. It will indicate whether enzymatic mutations are present in the TCA cycle and, if so, whether the mutations or their downstream signaling pathways can be targeted. This may improve treatment outcomes by inhibiting treatment resistance or promoting the effectiveness of anti-angiogenic agents or immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.A. Gatenby, A.S. Silva, R.J. Gillies, B.R. Frieden, Adaptive therapy. Cancer Res. 69, 4894–4903 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. H. Uramoto, F. Tanaka, Recurrence after surgery in patients with NSCLC. Transl. Lung Cancer Res. 3, 242–249 (2014)

    Google Scholar 

  3. S. Mallick, R. Benson, A. Hakim, G.K. Rath, Management of glioblastoma after recurrence: A changing paradigm. J. Egypt. Natl. Canc. Inst. 28, 199–210 (2016)

    Article  PubMed  Google Scholar 

  4. G. Corrado, V. Salutari, E. Palluzzi, M.G. Distefano, G. Scambia, G. Ferrandina, Optimizing treatment in recurrent epithelial ovarian cancer. Expert Rev. Anticancer Ther. 17, 1147–1158 (2017)

    Article  CAS  PubMed  Google Scholar 

  5. W.G. Kraybill, J. Harris, I.J. Spiro, D.S. Ettinger, T.F. DeLaney, R.H. Blum, D.R. Lucas, D.C. Harmon, G.D. Letson, B. Eisenberg, Long-term results of a phase 2 study of neoadjuvant chemotherapy and radiotherapy in the management of high-risk, high-grade, soft tissue sarcomas of the extremities and body wall: Radiation Therapy Oncology Group trial 9514. Cancer 116, 4613–4621 (2010)

    Article  CAS  PubMed  Google Scholar 

  6. M. Chowdhary, A. Chowdhary, N. Sen, N.G. Zaorsky, K.R. Patel, D. Wang, Does the addition of chemotherapy to neoadjuvant radiotherapy impact survival in high-risk extremity/trunk soft-tissue sarcoma? Cancer 125, 3801–3809 (2019)

    Article  CAS  PubMed  Google Scholar 

  7. R. Fischer, M. Breidert, T. Keck, F. Makowiec, C. Lohrmann, J. Harder, Early recurrence of pancreatic cancer after resection and during adjuvant chemotherapy. Saudi J. Gastroenterol. 118, 18 (2012)

    Google Scholar 

  8. X. Wang, H. Zhang, X. Chen, Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 22, 141–160 (2019)

    Google Scholar 

  9. P. Borst, Cancer drug pan-resistance: Pumps, cancer stem cells, quiescence, epithelial to mesenchymal transition, blocked cell death pathways, persisters or what? Open Biol. 2, 120066 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. C. Holohan, S. Van Schaeybroeck, D.B. Longley, P.G. Johnston, Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. I. Vega-Naredo, R. Loureiro, K.A. Mesquita, I.A. Barbosa, L.C. Tavares, A.F. Branco, J.R. Erickson, J. Holy, E.L. Perkins, R.A. Carvalho, P.J. Oliveira, Mitochondrial metabolism directs stemness and differentiation in P19 embryonal carcinoma stem cells. Cell Death Differ. 21, 1560–1574 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Wanet, T. Arnould, M. Najimi, P. Renard, Connecting mitochondria, metabolism, and stem cell fate. Stem Cells Dev. 24, 1957–1971 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. Missiroli, M. Perrone, I. Genovese, P. Pinton, C. Giorgi, Cancer metabolism and mitochondria: Finding novel mechanisms to fight tumours. EBioMedicine 59, 102943 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  14. O. Warburg, On the origin of cancer cells. Science 123, 309–314 (1956)

    Article  CAS  PubMed  Google Scholar 

  15. C.A. O’Brien, A. Kreso, J.E. Dick, Cancer stem cells in solid tumors: an overview. Semin. Radiat. Oncol. 19, 71 (2009)

    Article  PubMed  Google Scholar 

  16. E. Vlashi, C. Lagadec, L. Vergnes, T. Matsutani, K. Masui, M. Poulou, R. Popescu, L. Della Donna, P. Evers, C. Dekmezian, K. Reue, H. Christofk, P.S. Mischel, F. Pajonka, Metabolic state of glioma stem cells and nontumorigenic cells. Proc. Natl. Acad. Sci. U. S. A. 108, 16062–16067 (2011)

  17. J.M. García-Heredia, A. Carnero, Role of mitochondria in cancer stem cell resistance. Cells 9, 1693 (2020)

    Article  PubMed Central  CAS  Google Scholar 

  18. S. Ma, T.K. Lee, B.J. Zheng, K.W. Chan, X.Y. Guan, CD133 + HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 27, 1749–1758 (2008)

    Article  CAS  PubMed  Google Scholar 

  19. P. Dey, M. Rathod, A. De, Targeting stem cells in the realm of drug-resistant breast cancer. Breast Cancer Targets Ther. 11, 115–135 (2019)

    Article  CAS  Google Scholar 

  20. P. Zhou, B. Li, F. Liu, M. Zhang, Q. Wang, Y. Liu, Y. Yao, D. Li, The epithelial to mesenchymal transition (EMT) and cancer stem cells: Implication for treatment resistance in pancreatic cancer. Mol. Cancer 16, 1–11 (2017)

    Article  CAS  Google Scholar 

  21. I. Martínez-Reyes, N.S. Chandel, Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11, 1–11 (2020)

    Article  CAS  Google Scholar 

  22. M. Yang, T. Soga, P.J. Pollard, Oncometabolites: Linking altered metabolism with cancer. J. Clin. Invest. 123, 3652–3658 (2013)

  23. D. Ye, S. Ma, Y. Xiong, K.L. Guan, R-2-hydroxyglutarate as the key effector of IDH mutations promoting oncogenesis. Cancer Cell 23, 274–276 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. C. Chinopoulos, Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex J. Neurosci. Res. 91, 1030–1043 (2013)

    Article  CAS  Google Scholar 

  25. E. Dalla Pozza, I. Dando, R. Pacchiana, E. Liboi, M.T. Scupoli, M. Donadelli, M. Palmieri, Regulation of succinate dehydrogenase and role of succinate in cancer. Semin. Cell Dev. Biol. 1, 4–14 (2020)

    Article  CAS  Google Scholar 

  26. M.E. Figueroa, O. Abdel-Wahab, C. Lu, P.S. Ward, J. Patel, A. Shih, Y. Li, N. Bhagwat, A. Vasanthakumar, H.F. Fernandez, M.S. Tallman, Z. Sun, K. Wolniak, J.K. Peeters, W. Liu, S.E. Choe, V.R. Fantin, E. Paietta, B. Löwenberg, J.D. Licht, L.A. Godley, R. Delwel, P.J.M. Valk, C.B. Thompson, R.L. Levine, A. Melnick, Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 Function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. B. Ryder, F. Moore, A. Mitchell, S. Thompson, J. Christodoulou, S. Balasubramaniam, Balasubramaniam, Fumarase deficiency: A safe and potentially disease modifying effect of high fat/low carbohydrate diet. JIMD Rep. 40, 77–83 (2018)

    Article  CAS  PubMed  Google Scholar 

  28. J. Zhang, M.F. Walsh, G. Wu, M.N. Edmonson, T.A. Gruber, J. Easton, D. Hedges, X. Ma, X. Zhou, D.A. Yergeau, M.R. Wilkinson, B. Vadodaria, X. Chen, R.B. McGee, S. Hines-Dowell, R. Nuccio, E. Quinn, S.A. Shurtleff, M. Rusch, A. Patel, J.B. Becksfort, S. Wang, M.S. Weaver, L. Ding, E.R. Mardis, R.K. Wilson, A. Gajjar, D.W. Ellison, A.S. Pappo, C.-H. Pui, K.E. Nichols, J.R. Downing, Germline mutations in predisposition genes in pediatric cancer. N. Engl. J. Med. 373, 2336–2346 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. A. Fieuw, C. Kumps, A. Schramm, F. Pattyn, B. Menten, F. Antonacci, P. Sudmant, J.H. Schulte, N. Van Roy, S. Vergult, P.G. Buckley, A. De Paepe, R. Noguera, R. Versteeg, R. Stallings, A. Eggert, J. Vandesompele, K. De Preter, F. Speleman, Identification of a novel recurrent 1q42.2-1qter deletion in high risk MYCN single copy 11q deleted neuroblastomas Int. J. Cancer. 130, 2599–2606 (2012)

    CAS  Google Scholar 

  30. J. Hu, J.W. Locasale, J.H. Bielas, J. O’Sullivan, K. Sheahan, L.C. Cantley, M.G.V. Heiden, D. Vitkup, Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat. Biotechnol. 31, 522–529 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. C. Frezza, P.J. Pollard, E. Gottlieb, Inborn and acquired metabolic defects in cancer. J. Mol. Med. 89, 213–220 (2011)

    Article  CAS  PubMed  Google Scholar 

  32. D. Krell, P. Mulholland, A.E. Frampton, J. Krell, J. Stebbing, C. Bardella, IDH mutations in tumorigenesis and their potential role as novel therapeutic targets. Future Oncol. 9, 1923–1935 (2013)

    Article  CAS  PubMed  Google Scholar 

  33. J.R. Prensner, A.M. Chinnaiyan, Metabolism unhinged: IDH mutations in cancer . Nat. Med. 17, 291–293 (2011)

    Article  CAS  PubMed  Google Scholar 

  34. H. Yan, D.W. Parsons, G. Jin, R. McLendon, B.A. Rasheed, W. Yuan, I. Kos, I. Batinic-Haberle, S. Jones, G.J. Riggins, H. Friedman, A. Friedman, D. Reardon, J. Herndon, K.W. Kinzler, V.E. Velculescu, B. Vogelstein, Bigner, IDH1 and IDH2 mutations in gliomas . N. Engl. J. Med. 360, 765–773 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. B.C. Medeiros, A.T. Fathi, C.D. DiNardo, D.A. Pollyea, S.M. Chan, R. Swords, Isocitrate dehydrogenase mutations in myeloid malignancies. Leukemia 31, 272–281 (2017)

    Article  CAS  PubMed  Google Scholar 

  36. S. Wu, H. Lu, Y. Bai, Nrf2 in cancers: A double-edged sword. Cancer Med. 8, 2252–2267 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  37. T. Iizuka, Y. Ishii, K. Itoh, T. Kiwamoto, T. Kimura, Y. Matsuno, Y. Morishima, A.E. Hegab, S. Homma, A. Nomura, T. Sakamoto, M. Shimura, A. Yoshida, M. Yamamoto, K. Sekizawa, Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes Cells 10, 1113–1125 (2005)

    Article  CAS  PubMed  Google Scholar 

  38. Y. Aoki, H. Sato, N. Nishimura, S. Takahashi, K. Itoh, M. Yamamoto, Accelerated DNA adduct formation in the lung of the Nrf2 knockout mouse exposed to diesel exhaust. Toxicol. Appl. Pharmacol. 173, 154–160 (2001)

    Article  CAS  PubMed  Google Scholar 

  39. K. Iida, K. Itoh, Y. Kumagai, R. Oyasu, K. Hattori, K. Kawai, T. Shimazui, H. Akaza, M. Yamamoto, Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer Res. 64, 6424–6431 (2004)

    Article  CAS  PubMed  Google Scholar 

  40. P. Zhang, A. Singh, S. Yegnasubramanian, D. Esopi, P. Kombairaju, M. Bodas, H. Wu, S.G. Bova, S. Biswal, Loss of kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol. Cancer Ther. 9, 336–346 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. X.J. Wang, Z. Sun, N.F. Villeneuve, S. Zhang, F. Zhao, Y. Li, W. Chen, X. Yi, W. Zheng, G.T. Wondrak, P.K. Wong, D.D. Zhang, Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29, 1235–1243 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. A. Singh, V. Misra, R.K. Thimmulappa, H. Lee, S. Ames, M.O. Hoque, J.G. Herman, S.B. Baylin, D. Sidransky, E. Gabrielson, M.V. Brock, S. Biswal, Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med. 3, e420 (2006)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. T. Shibata, A. Kokubu, M. Gotoh, H. Ojima, T. Ohta, M. Yamamoto, S. Hirohashi, Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology 135, 1358–1368 (2008)

    Article  CAS  PubMed  Google Scholar 

  44. Y.R. Kim, J.E. Oh, M.S. Kim, M.R. Kang, S.W. Park, J.Y. Han, H.S. Eom, N.J. Yoo, S.H. Lee, Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin. J. Pathol. 220, 446–451 (2010)

    Article  CAS  PubMed  Google Scholar 

  45. M.B. Sporn, K.T. Liby, NRF2 and cancer: The Good, the bad and the importance of context. Nat. Rev. Cancer 12, 564–571 (2012)

    Article  CAS  PubMed  Google Scholar 

  46. P. Basak, P. Sadhukhan, P. Sarkar, P.C. Sil, Perspectives of the Nrf-2 signaling pathway in cancer progression and therapy. Toxicol. Reports 4, 306–318 (2017)

  47. B. Padmanabhan, K.I. Tong, T. Ohta, Y. Nakamura, M. Scharlock, M. Ohtsuji, M. Il Kang, A. Kobayashi, S. Yokoyama, M. Yamamoto, Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol. Cell 21, 689–700 (2006)

    Article  CAS  PubMed  Google Scholar 

  48. G.M. Denicola, F.A. Karreth, T.J. Humpton, A. Gopinathan, C. Wei, K. Frese, D. Mangal, K.H. Yu, C.J. Yeo, E.S. Calhoun, F. Scrimieri, J.M. Winter, R.H. Hruban, C. Iacobuzio-Donahue, S.E. Kern, I.A. Blair, D.A. Tuveson, Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106–109 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. N. Chen, X. Yi, N. Abushahin, S. Pang, D. Zhang, B. Kong, W. Zheng, Nrf2 expression in endometrial serous carcinomas and its precancers. Int. J. Clin. Exp. Pathol. 4, 85 (2011)

    Google Scholar 

  50. S. Zhou, W. Ye, Q. Shao, M. Zhang, J. Liang, Nrf2 is a potential therapeutic target in radioresistance in human cancer. Crit. Rev. Oncol. Hematol. 88, 706–715 (2013)

    Article  PubMed  Google Scholar 

  51. L. Milkovic, N. Zarkovic, and L. Saso, Controversy about pharmacological modulation of Nrf2 for cancer therapy. Redox Biol. 12, 727–732 (2017)

  52. E. Kansanen, S.M. Kuosmanen, H. Leinonen, A.L. Levonenn, The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol. 1, 45–49 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. H.C. Huang, T. Nguyen, C.B. Pickett, Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J. Biol. Chem. 277, 42769–42774 (2002)

    Article  CAS  PubMed  Google Scholar 

  54. A.N.T. Kong, E. Owuor, R. Yu, V. Hebbar, C. Chen, R. Hu, S. Mandlekar, Induction of xenobiotic enzymes by the map kinase pathway and the antioxidant or electrophile response element (ARE/EpRE). Drug Metab. Rev. 33, 255–271 (2001)

    Article  CAS  PubMed  Google Scholar 

  55. J.M. Lee, J.M. Hanson, W.A. Chu, J.A. Johnson, Phosphatidylinositol 3-Kinase, not extracellular signal-regulated Kinase, Regulates activation of the antioxidant-responsive element in IMR-32 human neuroblastoma cells. J. Biol. Chem. 276, 20011–20016 (2001)

    Article  CAS  PubMed  Google Scholar 

  56. T. Nguyen, P.J. Sherratt, C.B. Pickett, Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu. Rev. Pharmacol. Toxicol. 43, 233–260 (2003)

    Article  CAS  PubMed  Google Scholar 

  57. R. Yu, C. Chen, Y.Y. Mo, V. Hebbar, E.D. Owuor, T.H. Tan, A.N.T. Kong, Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism. J. Biol. Chem. 275, 39907–39913 (2000)

    Article  CAS  PubMed  Google Scholar 

  58. L.E. Tebay, H. Robertson, S.T. Durant, S.R. Vitale, T.M. Penning, A.T. Dinkova-Kostova, J.D. Hayes, Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic. Biol. Med. 88, 108–146 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. A. Ooi and K. A. Furge, Fumarate hydratase inactivation in renal tumors: HIF1α, NRF2 and “cryptic targets” of transcription factors. Chin. J. Cancer. 31, 413–420 (2012)

  60. J. Adam, E. Hatipoglu, L. O’Flaherty, N. Ternette, N. Sahgel, H. Lockstone, D. Baban, G.W. NyeE, K. Stamp, M. Wolhuter, R. Stevens, P. Fischer, P.H. Carmeliet, C.W. Maxwell, N. Pugh, T. Frizzell, B.M. Soga, M. Kessler, P.J. El-Bahrawy, Ratcliffe, P. Pollard, Renal Cyst formation in FH1-deficient mice is independent of the hif/phd pathways: roles for fumarate in keap1 succination and nrf2 signalling. Cancer Cell 20, 524–537 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. S.K. Niture, A.K. Jaiswal, Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis. J. Biol. Chem. 287, 9873–9886 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. M. Zhang, C. Zhang, L. Zhang, Q. Yang, S. Zhou, Q. Wen, J. Wang, Nrf2 is a potential prognostic marker and promotes proliferation and invasion in human hepatocellular carcinoma. BMC Cancer 15, 1–12 (2015)

    Article  CAS  Google Scholar 

  63. J. Chen, Z. Zhang, L. Cai, Diabetic cardiomyopathy and its prevention by Nrf2: Current status. Diabetes Metab. J. 38, 337 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. X. Sun, S. Wang, J. Gai, J. Guan, J. Li, Y. Li, J. Zhao, C. Zhao, L. Fu, Q. Li, SIRT5 promotes cisplatin resistance in ovarian cancer by suppressing dna damage in a ROS-dependent manner via regulation of the Nrf2/HO-1 pathway. Front. Oncol. 9, 754 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  65. M. Xia, H. Yu, S. Gu, Y. Xu, J. Su, H. Li, J. Kang, M. Cui, P62/SQSTM1 is involved in cisplatin resistance in human ovarian cancer cells via the Keap1-Nrf2-ARE system. Int. J. Oncol. 45, 2341–2348 (2014)

    Article  CAS  PubMed  Google Scholar 

  66. W. Ge, K. Zhao, X. Wang, H. Li, M. Yu, M. He, X. Xue, Y. Zhu, C. Zhang, Y. Cheng, S. Jiang, Y. Hu, iASPP is an antioxidative factor and drives cancer growth and drug resistance by competing with Nrf2 for Keap1 binding. Cancer Cell 32, 561–573 (2017)

    Article  CAS  PubMed  Google Scholar 

  67. X. Tang, H. Wang, L. Fan, X. Wu, A. Xin, H. Ren, X.J. Wang, Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radic. Biol. Med. 50, 1599–1609 (2011)

    Article  CAS  PubMed  Google Scholar 

  68. T. Wu, B.G. Harder, P.K. Wong, J.E. Lang, D.D. Zhang, Oxidative stress, mammospheres and Nrf2-new implication for breast cancer therapy? Mol. Carcinog. 54, 1494–1502 (2015)

    Article  CAS  PubMed  Google Scholar 

  69. S. Falone, S. Santini, V. Cordone, P. Cesare, A. Bonfigli, M. Grannonico, G. Di Emidio, C. Tatone, M. Cacchio, F. Amicarelli, Power frequency magnetic field promotes a more malignant phenotype in neuroblastoma cells via redox-related mechanisms. Sci. Rep. 7, 1–14 (2017)

    Article  CAS  Google Scholar 

  70. Y. Xiang, W. Ye, C. Huang, D. Yu, H. Chen, T. Deng, F. Zhang, B. Lou, J. Zhang, K. Shi, B. Chen, and M. Zhou, Brusatol enhances the chemotherapy efficacy of gemcitabine in pancreatic cancer via the Nrf2 signalling pathway. Oxid. Med. Cell. Longev (2018). https://doi.org/10.1155/2018/2360427

  71. B. Halliwell, Free radicals and antioxidants - Quo vadis? Trends Pharmacol. Sci. 32, 125–130 (2011)

    Article  CAS  PubMed  Google Scholar 

  72. B. Shen, P.J. He, C.L. Shao, Norcantharidin induced DU145 cell apoptosis through ROS-mediated mitochondrial dysfunction and energy depletion. PLoS One 8, e84610 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. P. Brenneisen, A.S. Reichert, Nanotherapy and reactive oxygen species (ROS) in cancer: A novel perspective. Antioxidants 7, 31 (2018)

    Article  PubMed Central  CAS  Google Scholar 

  74. M.L. Circu, T.Y. Aw, Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 48, 749–762 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. S. Orrenius, V. Gogvadze, B. Zhivotovsky, Calcium and mitochondria in the regulation of cell death. Biochem. Biophys. Res. Commun. 460, 72–81 (2015)

    Article  CAS  PubMed  Google Scholar 

  76. P. Pallepati, D.A. Averill-Bates, Mild thermotolerance induced at 40 °c protects HeLa cells against activation of death receptor-mediated apoptosis by hydrogen peroxide. Free Radic. Biol. Med. 50, 667–679 (2011)

    Article  CAS  PubMed  Google Scholar 

  77. G. Mellier, S. Pervaiz, The three Rs along the TRAIL: Resistance, re-sensitization and reactive oxygen species (ROS). Free Radic. Res. 46, 996–1003 (2012)

    Article  CAS  PubMed  Google Scholar 

  78. M. Redza-Dutordoir, D.A. Averill-Bates, Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta - Mol. Cell Res. 1863, 2977–2992 (2016)

    Article  CAS  Google Scholar 

  79. X. Bai, Y. Chen, X. Hou, M. Huang, and J. Jin, Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab. Rev. 84, 541–567 (2016)

  80. B. Choi, M.K. Kwak, Shadows of NRF2 in cancer: Resistance to chemotherapy. Curr. Opin. Toxicol. 1, 20–28 (2016)

    Article  Google Scholar 

  81. M. Cojoc, K. Mäbert, M.H. Muders, A. Dubrovska, A role for cancer stem cells in therapy resistance: Cellular and molecular mechanisms. Semin. Cancer Biol. 31, 16–27 (2015)

    Article  CAS  PubMed  Google Scholar 

  82. Y. Yang, V. Valera, C. Sourbier, C.D. Vocke, M. Wei, L. Pike, Y. Huang, M.A. Merino, G. Bratslavsky, M. Wu, C.J. Ricketts, W.M. Linehan, A novel fumarate hydratase-deficient HLRCC kidney cancer cell line, UOK268: A model of the Warburg effect in cancer. Cancer Genet. 205, 377–390 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. K.M. Holmström, L. Baird, Y. Zhang, I. Hargreaves, A. Chalasani, J.M. Land, L. Stanyer, M. Yamamoto, A.T. Dinkova-Kostova, A.Y. Abramov, Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biol. Open 2, 761–770 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. T.H. Kim, E.G. Hur, S.J. Kang, J.A. Kim, D. Thapa, Y. Mie Lee, S.K. Ku, Y. Jung, M.K. Kwak, NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1α. Cancer Res. 71, 2260–2275 (2011)

    Article  CAS  PubMed  Google Scholar 

  85. P. Vaupel, H. Schmidberger, A. Mayer, The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int. J. Radiat. Biol. 95, 912–919 (2019)

    Article  CAS  PubMed  Google Scholar 

  86. J.C. Ghosh, M.D. Siegelin, V. Vaira, A. Faversani, M. Tavecchio, Y.C. Chae, S. Lisanti, P. Rampini, M. Giroda, M.C. Caino, J.H. Seo, A.V. Kossenkov, R.D. Michalek, D.C. Schultz, S. Bosari, L.R. Languino, D.C. Altieri, Adaptive mitochondrial reprogramming and resistance to PI3K therapy. J. Natl. Cancer Inst. 107, dju502 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. A. Viale, P. Pettazzoni, C.A. Lyssiotis, H. Ying, N. Sánchez, M. Marchesini, A. Carugo, T. Green, S. Seth, V. Giuliani, M. Kost-Alimova, F. Muller, S. Colla, L. Nezi, G. Genovese, A.K. Deem, A. Kapoor, W. Yao, E. Brunetto, Y. Kang, M. Yuan, J.M. Asara, Y.A. Wang, T.P. Heffernan, A.C. Kimmelman, H. Wang, J.B. Fleming, L.C. Cantley, R.A. DePinho, G.F. Draetta, Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514, 628–632 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. K.M. Havas, V. Milchevskaya, K. Radic, A. Alladin, E. Kafkia, M. Garcia, J. Stolte, B. Klaus, N. Rotmensz, T.J. Gibson, B. Burwinkel, A. Schneeweiss, G. Pruneri, K.R. Patil, R. Sotillo, M. Jechlinger, Metabolic shifts in residual breast cancer drive tumor recurrence. J. Clin. Invest. 127, 2091–2105 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  89. R. Su, L. Dong, C. Li, S. Nachtergaele, M. Wunderlich, Y. Qing, X. Deng, Y. Wang, X. Weng, C. Hu, M. Yu, J. Skibbe, Q. Dai, D. Zou, T. Wu, K. Yu, H. Weng, H. Huang, K. Ferchen, X. Qin, B. Zhang, J. Qi, A.T. Sasaki, D.R. Plas, J.E. Bradner, M. Wei, G. Marcucci, X. Jiang, J.C. Mulloy, J. Jin, C. He, J. Chen, R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA. Cell 172, 90–105 (2018)

    Article  CAS  PubMed  Google Scholar 

  90. L. Bunse, S. Pusch, T. Bunse, F. Sahm, K. Sanghvi, M. Friedrich, D. Alansary, J.K. Sonner, E. Green, K. Deumelandt, M. Kilian, C. Neftel, S. Uhlig, T. Kessler, A. von Landenberg, A.S. Berghoff, K. Marsh, M. Steadman, D. Zhu, B. Nicolay, B. Wiestler, M.O. Breckwoldt, R. Al-Ali, S. Karcher-Bausch, M. Bozza, I. Oezen, M. Kramer, J. Meyer, A. Habel, J. Eisel, G. Poschet, M. Weller, M. Preusser, M. Nadji-Ohl, N. Thon, M.C. Burger, P.N. Harter, M. Ratliff, R. Harbottle, A. Benner, D. Schrimpf, J. Okun, C. Herold-Mende, S. Turcan, S. Kaulfuss, H. Hess-Stumpp, K. Bieback, D.P. Cahill, K.H. Plate, D. Hänggi, M. Dorsch, M.L. Suvà, B.A. Niemeyer, A. von Deimling, W. Wick, M. Platten, Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat. Med. 24, 1192–1203 (2018)

    Article  CAS  PubMed  Google Scholar 

  91. P.S. Ward, J. Patel, D.R. Wise, O. Abdel-Wahab, B.D. Bennett, H.A. Coller, J.R. Cross, V.R. Fantin, C.V. Hedvat, A.E. Perl, J.D. Rabinowitz, M. Carroll, S.M. Su, K.A. Sharp, R.L. Levine, C.B. Thompson, The common feature of leukemia-associated IDH1 and IDH2 mutations is a Neomorphic enzyme activity converting α-Ketoglutarate to 2-Hydroxyglutarate. Cancer Cell 17, 225–234 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. A.T. Fathi, B.V. Nahed, S.A. Wander, A.J. Iafrate, D.R. Borger, R. Hu, A. Thabet, D.P. Cahill, A.M. Perry, C.P. Joseph, A. Muzikansky, A.S. Chi, Elevation of urinary 2-Hydroxyglutarate in IDH ‐mutant glioma. Oncologist 21, 214–219 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Y.W. Chen, Y.F. Chen, Y.T. Chen, W.T. Chiu, M.R. Shen, The STIM1-Orai1 pathway of store-operated Ca2 + entry controls the checkpoint in cell cycle G1/S transition. Sci. Rep. 6, 1–13 (2016)

    CAS  Google Scholar 

  94. G.S. Bird, S.Y. Hwang, J.T. Smyth, M. Fukushima, R.R. Boyles, J.W. Putney, STIM1 is a calcium sensor specialized for digital signaling . Curr. Biol. 19, 1724–1729 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. C.Y. Park, P.J. Hoover, F.M. Mullins, P. Bachhawat, E.D. Covington, S. Raunser, T. Walz, K.C. Garcia, R.E. Dolmetsch, R.S. Lewis, STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136, 876–890 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. A. Gudlur, Y. Zhou, and P. G. Hogan, STIM-ORAI Interactions That Control the CRAC Channel. Curr. Top. Membr. 71, 33–58 (2013)

  97. Y. Zhou, P. Srinivasan, S. Razavi, S. Seymour, P. Meraner, A. Gudlur, P.B. Stathopulos, M. Ikura, A. Rao, P.G. Hogan, Initial activation of STIM1, the regulator of store-operated calcium entry. Nat. Struct. Mol. Biol. 20, 973–981 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. M.D. Cahalan, STIMulating store-operated Ca2 + entry. Nat. Cell Biol. 31, 597–601 (2009)

    Google Scholar 

  99. M. Sieber, R. Baumgrass, Novel inhibitors of the calcineurin/NFATc hub - Alternatives to CsA and FK506? Cell Commun. Signal (2009). https://doi.org/10.1186/1478-811X-7-25

  100. R. Wang, C.P. Dillon, L.Z. Shi, S. Milasta, R. Carter, D. Finkelstein, L.L. McCormick, P. Fitzgerald, H. Chi, J. Munger, D.R. Green, The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. N. Nishida, H. Yano, T. Nishida, T. Kamura, M. Kojiro, Angiogenesis in cancer. Vasc. Health Risk Manag. 2, 213–219 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. P. Carmeliet, VEGF as a key mediator of angiogenesis in cancer. Oncology 69, 4–10 (2005)

    Article  CAS  PubMed  Google Scholar 

  103. R.T.P. Poon, S.T. Fan, J. Wong, Clinical implications of circulating angiogenic factors in cancer patients. J. Clin. Oncol. 19, 1207–1225 (2001)

    Article  CAS  PubMed  Google Scholar 

  104. N. Ferrara, H.P. Gerber, The role of vascular endothelial growth factor in angiogenesis. Acta Haematol. 106, 148–156 (2001)

    Article  CAS  PubMed  Google Scholar 

  105. M.A. McDonough, C. Loenarz, R. Chowdhury, I.J. Clifton, C.J. Schofield, Structural studies on human 2-oxoglutarate dependent oxygenases Curr. Opin. Struct. Biol. 20, 659–672 (2010)

    Article  CAS  Google Scholar 

  106. A. King, M.A. Selak, E. Gottlieb, Succinate dehydrogenase and fumarate hydratase: Linking mitochondrial dysfunction and cancer. Oncogene 25, 4675–4682 (2006)

    Article  CAS  PubMed  Google Scholar 

  107. C. Lin, R. McGough, B. Aswad, J.A. Block, R. Terek, Hypoxia induces HIF-1α and VEGF expression in chondrosarcoma cells and chondrocytes. J. Orthop. Res. 22, 1175–1181 (2004)

    Article  CAS  PubMed  Google Scholar 

  108. M. Safran, W.G. Kaelin, HIF hydroxylation and the mammalian oxygen-sensing pathway J. Clin. Invest. 111, 779–783 (2003)

    Article  CAS  Google Scholar 

  109. L.E. Huang, Z. Arany, D.M. Livingston, H. Franklin, Bunn, Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its α subunit. J. Biol. Chem. 271, 32253–32259 (1996)

    Article  CAS  PubMed  Google Scholar 

  110. T. Zhao, X. Mu, Q. You, Succinate: An initiator in tumorigenesis and progression. Oncotarget 8, 53819–53828 (2017). https://doi.org/10.18632/oncotarget.17734

    Article  PubMed  PubMed Central  Google Scholar 

  111. J.S. Isaacs, J.J. Yun, D.R. Mole, S. Lee, C. Torres-Cabala, Y.L. Chung, M. Merino, J. Trepel, B. Zbar, J. Toro, P.J. Ratcliffe, W.M. Linehan, L. Neckers, HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: Novel role of fumarate in regulation of HIF stability. Cancer Cell. 8, 143–153 (2005). https://doi.org/10.1016/j.ccr.2005.06.017

    Article  CAS  PubMed  Google Scholar 

  112. R. Vatrinet, G. Leone, M. De Luise, G. Girolimetti, M. Vidone, G. Gasparre, A.M. Porcelli, The α-ketoglutarate dehydrogenase complex in cancer metabolic plasticity. Cancer Metab. Cancer Metab. 5, 1–14 (2017)

    Google Scholar 

  113. D.A. Tennant, C. Frezza, E.D. MacKenzie, Q.D. Nguyen, L. Zheng, M.A. Selak, D.L. Roberts, C. Dive, D.G. Watson, E.O. Aboagye, E. Gottlieb, Reactivating HIF prolyl hydroxylases under hypoxia results in metabolic catastrophe and cell death. Oncogene 28, 4009–4021 (2009)

    Article  CAS  PubMed  Google Scholar 

  114. P. Koivunen, M. Hirsilä, A.M. Remes, I.E. Hassinen, K.I. Kivirikko, J. Myllyharju, Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: Possible links between cell metabolism and stabilization of HIF. J. Biol. Chem. 282, 4524–4532 (2007)

    Article  CAS  PubMed  Google Scholar 

  115. W. Xu, H. Yang, Y. Liu, Y. Yang, P. Wang, S.H. Kim, S. Ito, C. Yang, P. Wang, M.T. Xiao, L.X. Liu, W.Q. Jiang, J. Liu, J.Y. Zhang, B. Wang, S. Frye, Y. Zhang, Y.H. Xu, Q.Y. Lei, K.L. Guan, S.M. Zhao, Y. Xiong, Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. V. Cocetta, E. Ragazzi, and M. Montopoli, Mitochondrial involvement in cisplatin resistance. Int. J. Mol. Sci. (2019). https://doi.org/10.3390/ijms20143384

  117. J.L. Spees, S.D. Olson, M.J. Whitney, D.J. Prockop, Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl. Acad. Sci. U. S. A. 103, 1283–1288 (2006)

  118. M.V. Jackson, T.J. Morrison, D.F. Doherty, D.F. McAuley, M.A. Matthay, A. Kissenpfennig, C.M. O’Kane, A.D. Krasnodembskaya, Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells 34, 2210–2223 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. X. Li, Y. Zhang, S.C. Yeung, Y. Liang, X. Liang, Y. Ding, M.S.M. Ip, H.F. Tse, J.C.W. Mak, Q. Lian, Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage. Am. J. Respir. Cell Mol. Biol. 51, 455–465 (2014)

    Article  PubMed  CAS  Google Scholar 

  120. K. Liu, K. Ji, L. Guo, W. Wu, H. Lu, P. Shan, C. Yan, Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia-reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc. Res. 92, 10–18 (2014)

    Article  CAS  PubMed  Google Scholar 

  121. J. Varga, F.R. Greten, Cell plasticity in epithelial homeostasis and tumorigenesis. Nat. Cell Biol. 19, 1133–1141 (2017)

    Article  CAS  PubMed  Google Scholar 

  122. N. Boukelmoune, G.S. Chiu, A. Kavelaars, C.J. Heijnen, Mitochondrial transfer from mesenchymal stem cells to neural stem cells protects against the neurotoxic effects of cisplatin . Acta Neuropathol. Commun. 6, 1–13 (2018)

    Article  CAS  Google Scholar 

  123. J. Pasquier, B.S. Guerrouahen, H. Al Thawadi, P. Ghiabi, M. Maleki, N. Abu-Kaoud, A. Jacob, M. Mirshahi, L. Galas, S. Rafii, F. Le Foll, A. Rafii, Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. J. Transl. Med. 11, 1–14 (2013)

    Article  CAS  Google Scholar 

  124. R. Burt, A. Dey, S. Aref, M. Aguiar, A. Akarca, K. Bailey, W. Day, S. Hooper, A. Kirkwood, K. Kirschner, S.W. Lee, C. Lo Celso, J. Manji, M.R. Mansour, T. Marafioti, R.J. Mitchell, R.C. Muirhead, K.C.Y. Ng, C. Pospori, I. Puccio, K. Zuborne-Alapi, E. Sahai, A.K. Fielding, Activated stromal cells transfer mitochondria to rescue acute lymphoblastic leukemia cells from oxidative stress. Blood 134, 1415–1429 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. C.R. Marlein, L. Zaitseva, R.E. Piddock, S.D. Robinson, D.R. Edwards, M.S. Shafat, Z. Zhou, M. Lawes, K.M. Bowles, S.A. Rushworth, NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood 130, 1649–1660 (2017)

    Article  CAS  PubMed  Google Scholar 

  126. J.M. Yang, Z. Xu, H. Wu, H. Zhu, X. Wu, W.N. Hait, Overexpression of extracellular matrix metalloproteinase inducer in multidrug resistant cancer cells. Mol. Cancer Res. 1, 420–427 (2003)

    CAS  PubMed  Google Scholar 

  127. K. Sone, K. Maeno, A. Masaki, E. Kunii, O. Takakuwa, Y. Kagawa, A. Takeuchi, S. Fukuda, T. Uemura, K. Fukumitsu, Y. Kanemitsu, H. Ohkubo, M. Takemura, Y. Ito, T. Oguri, H. Inagaki, A. Niimi, Nestin expression affects resistance to chemotherapy and clinical outcome in small cell lung cancer. Front. Oncol. 10, 1367 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  128. V.S. Jones, R.Y. Huang, L.P. Chen, Z.S. Chen, L. Fu, R.P. Huang, Cytokines in cancer drug resistance: Cues to new therapeutic strategies. Biochim. Biophys. Acta - Rev. Cancer 1865, 255–265 (2016)

    Article  CAS  Google Scholar 

  129. B. Perillo, M. Di Donato, A. Pezone, E. Di Zazzo, P. Giovannelli, G. Galasso, G. Castoria, A. Migliaccio, ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med. 52, 192–203 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. R. Moschoi, V. Imbert, M. Nebout, J. Chiche, D. Mary, T. Prebet, E. Saland, R. Castellano, L. Pouyet, Y. Collette, N. Vey, C. Chabannon, C. Recher, J.E. Sarry, D. Alcor, J.F. Peyron, E. Griessinger, Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood 128, 253–264 (2016)

    Article  CAS  PubMed  Google Scholar 

  131. A. Caicedo, V. Fritz, J.M. Brondello, M. Ayala, I. Dennemont, N. Abdellaoui, F. De Fraipont, A. Moisan, C.A. Prouteau, H. Boukhaddaoui, C. Jorgensen, M.L. Vignais, MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci. Rep. 5, 1–10 (2015)

    Article  CAS  Google Scholar 

  132. X. Wang and H. H. Gerdes, Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Death Differ. 22, 1181–1191 (2015)

  133. F. Guerra, A.A. Arbini, L. Moro, Mitochondria and cancer chemoresistance Biochim. Biophys. Acta - Bioenerg. 1858, 686–699 (2017)

    Article  CAS  Google Scholar 

  134. E.A. Zaal, C.R. Berkers, The influence of metabolism on drug response in cancer Front. Oncol. 8, 500 (2018)

    Google Scholar 

  135. E.J. Choi, B.J. Jung, S.H. Lee, H.S. Yoo, E.A. Shin, H.J. Ko, S. Chang, S.Y. Kim, S.M. Jeon, A clinical drug library screen identifies clobetasol propionate as an NRF2 inhibitor with potential therapeutic efficacy in KEAP1 mutant lung cancer. Oncogene 36, 5285–5295 (2017)

    Article  CAS  PubMed  Google Scholar 

  136. Y. Zhou, Y. Zhou, M. Yang, K. Wang, Y. Liu, M. Zhang, Y. Yang, C. Jin, R. Wang, R. Hu, Digoxin sensitizes gemcitabine-resistant pancreatic cancer cells to gemcitabine via inhibiting Nrf2 signaling pathway. Redox Biol. 22, 101131 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. H. Lin, Y. Qiao, H. Yang, Q. Nan, W. Qu, F. Feng, W. Liu, Y. Chen, H. Sun, Small molecular Nrf2 inhibitors as chemosensitizers for cancer therapy. Future Med. Chem. 12, 243–267 (2020)

    Article  CAS  PubMed  Google Scholar 

  138. F. Chen, H. Wang, J. Zhu, R. Zhao, P. Xue, Q. Zhang, M. Bud Nelson, W. Qu, B. Feng, J. Pi, Camptothecin suppresses NRF2-ARE activity and sensitises hepatocellular carcinoma cells to anticancer drugs. Br. J. Cancer. 117, 1495–1506 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. S.R. Kim, Y.M. Ha, Y.M. Kim, E.J. Park, J.W. Kim, S.W. Park, H.J. Kim, H.T. Chung, K.C. Chang, Ascorbic acid reduces HMGB1 secretion in lipopolysaccharide-activated RAW 264.7 cells and improves survival rate in septic mice by activation of Nrf2/HO-1 signals. Biochem. Pharmacol. 95, 279–289 (2015)

    Article  CAS  PubMed  Google Scholar 

  140. A. Arlt, S. Sebens, S. Krebs, C. Geismann, M. Grossmann, M.L. Kruse, S. Schreiber, H. Schäfer, Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 32, 4825–4835 (2013)

    Article  CAS  PubMed  Google Scholar 

  141. A. Olayanju, I.M. Copple, H.K. Bryan, G.T. Edge, R.L. Sison, M.W. Wong, Z.Q. Lai, Z.X. Lin, K. Dunn, C.M. Sanderson, A.F. Alghanem, M.J. Cross, E.C. Ellis, M. Ingelman-Sundberg, H.Z. Malik, N.R. Kitteringham, C.E. Goldring, B.K. Park, Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity - Implications for therapeutic targeting of Nrf2 Free Radic. Biol. Med. 78, 202–212 (2015)

    CAS  Google Scholar 

  142. G. Montalban-Bravo, C.D. DiNardo, The role of ID Hmutations in acute myeloid leukemia. Futur. Oncol. 14, 979–993 (2018)

    Article  CAS  Google Scholar 

  143. K. Lee, Y.S. Song, Y. Shin, X. Wen, Y. Kim, N.Y. Cho, J.M. Bae, G.H. Kang, Intrahepatic cholangiocarcinomas with IDH1/2 mutation-associated hypermethylation at selective genes and their clinicopathological features. Sci. Rep. 10, 1–10 (2020)

    CAS  Google Scholar 

  144. M.F. Amary, K. Bacsi, F. Maggiani, S. Damato, D. Halai, F. Berisha, R. Pollock, P. O’Donnell, A. Grigoriadis, T. Diss, M. Eskandarpour, N. Presneau, P.C.W. Hogendoorn, A. Futreal, R. Tirabosco, A.M. Flanagan, IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J. Pathol. 224, 334–343 (2011)

    Article  CAS  PubMed  Google Scholar 

  145. S. Han, Y. Liu, S.J. Cai, M. Qian, J. Ding, M. Larion, M.R. Gilbert, C. Yang, IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Br. J. Cancer. 122, 1580–1589 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  146. A. Chaturvedi, L. Herbst, S. Pusch, L. Klett, R. Goparaju, D. Stichel, S. Kaulfuss, O. Panknin, K. Zimmermann, L. Toschi, R. Neuhaus, A. Haegebarth, H. Rehwinkel, H. Hess-Stumpp, M. Bauser, T. Bochtler, E.A. Struys, A. Sharma, A. Bakkali, R. Geffers, M.M. Araujo-Cruz, F. Thol, R. Gabdoulline, A. Ganser, A.D. Ho, A. Von Deimling, K. Rippe, M. Heuser, A. Krämer, Pan-mutant-IDH1 inhibitor BAY1436032 is highly effective against human IDH1 mutant acute myeloid leukemia in vivo. Leukemia 31, 2020–2028 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. S. Pusch, S. Krausert, V. Fischer, J. Balss, M. Ott, D. Schrimpf, D. Capper, F. Sahm, J. Eisel, A.C. Beck, M. Jugold, V. Eichwald, S. Kaulfuss, O. Panknin, H. Rehwinkel, K. Zimmermann, R.C. Hillig, J. Guenther, L. Toschi, R. Neuhaus, A. Haegebart, H. Hess-Stumpp, M. Bauser, W. Wick, A. Unterberg, C. Herold-Mende, M. Platten, A. von Deimling, Pan-mutant IDH1 inhibitor BAY 1436032 for effective treatment of IDH1 mutant astrocytoma in vivo. Acta Neuropathol. 133, 629–644 (2017)

    Article  CAS  PubMed  Google Scholar 

  148. D. Golub, N. Iyengar, S. Dogra, T. Wong, D. Bready, K. Tang, A.S. Modrek, D.G. Placantonakis, Mutant isocitrate dehydrogenase inhibitors as targeted cancer therapeutics. Front. Oncol. 9, 417 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  149. E. Lou, S. Fujisawa, A. Barlas, Y. Romin, K. Manova-Todorova, M.A.S. Moore, S. Subramanian, Subramanian, Tunneling nanotubes: A new paradigm for studying intercellular communication and therapeutics in cancer. Commun. Integr. Biol. 5, 399–403 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. E. Lou, S. Fujisawa, A. Morozov, A. Barlas, Y. Romin, Y. Dogan, S. Gholami, A.L. Moreira, K. Manova-Todorova, M.A.S. Moore, Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS One 7, e33093 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Cancer Association of South Africa (CANSA); the National Research Foundation (NRF); Medical Research Council (MRC) of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle van der Merwe.

Ethics declarations

Conflict of interest disclosure

None declared.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Merwe, M., van Niekerk, G., Fourie, C. et al. The impact of mitochondria on cancer treatment resistance. Cell Oncol. 44, 983–995 (2021). https://doi.org/10.1007/s13402-021-00623-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-021-00623-y

Keywords

Navigation