Skip to main content
Log in

An analytical formula for predicting high-lying rovibrational term values of CaO molecule

  • Reply to Comment - Molecular Physics and Chemical Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The Sun’s difference converging method is successfully extended to calculate the rovibrational term values of diatomic molecules in this study. Similarly, a new analytical formula is derived from the idea of differentiation and the diatomic molecular total energy expression given by Herzberg including high-order rotational spectral constants such as \(L_{\upsilon } \), \(P_{\upsilon } \), \(Q_{\upsilon } \), and \(S_{\upsilon } \), which cannot be obtained experimentally and theoretically. This formula is more concise and convenient than the Herzberg’s expression and can correctly predict the high-lying excitation rovibrational term values without any spectral constants and only using 10 known experimental term values with a set of physical criteria for a vibrational level of diatomic molecule. The formula is applied to research the rovibrational term values of vibrational levels \(\upsilon =0\) andc \(\upsilon =3\) in the A\(^{\mathrm {1}}\Sigma ^{\mathrm {+}}\) electronic state of CaO molecule in this work. The results show that the correct values of the unknown rotational states up to\( J \quad =\) 80 for each vibrational level are predicted by using the formula This study provides important reference data for the related research areas of CaO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availibility Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated or analysed during this study are included in this published article.]

References

  1. R. Wynar, R.S. Freeland, D.J. Han, C. Ryu, D.J. Heinzen, Science 287, 1016–1019 (2000)

    Article  ADS  Google Scholar 

  2. B. Xiao, S. Kado, S. Kajita, D. Yamasaki, Plasma Phys. Control. Fusion 46, 653–668 (2004)

    Article  ADS  Google Scholar 

  3. C. Puzzarini, M.P. de Lara-Castells, R. Tarroni, P. Palmieri, J. Domaison, Phys. Chem. Chem. Phys. 1, 3955–3960 (1999)

    Article  Google Scholar 

  4. M. Mladenovicì, Spectro chimica Acta Part A 58, 809–824 (2002)

    Article  ADS  Google Scholar 

  5. P.C. Mahanti, Phys. Rev. 42, 609–621 (1932)

    Article  ADS  Google Scholar 

  6. P.H. Brodersen, Z. Phys. 79, 613–625 (1932)

    Article  ADS  Google Scholar 

  7. P.H. Brodersen, Z. Phys. 104, 135–156 (1937)

    Article  ADS  Google Scholar 

  8. W.F. Meggers, J. Res. Bur. Stand. 10, 669–684 (1933)

    Article  Google Scholar 

  9. M. Hultin, A. Lagerqvist, Ark. Fys. 2, 471–507 (1950)

    Google Scholar 

  10. R.W. Field, J. Chem. Phys. 60, 2400–2413 (1974)

    Article  ADS  Google Scholar 

  11. R.W. Field, G.A. Capelle, C. Jones, J. Mol. Spectrosc. 54, 156–159 (1975)

    Article  ADS  Google Scholar 

  12. R.F. Marks, H.S. Schweda, R.A. Gottscho, R.W. Field, J. Chem. Phys. 76, 4689–4691 (1982)

    Article  ADS  Google Scholar 

  13. R.F. Marks, R.A. Gottscho, R.W. Field, Phys. Scr. 25, 312–328 (1982)

    Article  ADS  Google Scholar 

  14. J.B. Norman, K.J. Cross, H.S. Schweda, M. Polak, R.W. Field, Mol. Phys. 66, 235–268 (1989)

    Article  ADS  Google Scholar 

  15. D.P. Baldwin, R.W. Field, J. Mol. Spectrosc. 133, 90–95 (1989)

    Article  ADS  Google Scholar 

  16. D.P. Baldwin, J.B. Norman, R.A. Soltz, A. Sur, R.W. Field, J. Mol. Spectrosc. 139, 39–67 (1990)

    Article  ADS  Google Scholar 

  17. D.P. Baldwin, R.W. Field, J. Mol. Spectrosc. 139, 68–76 (1990)

    Article  ADS  Google Scholar 

  18. D.P. Baldwin, R.W. Field, J. Mol. Spectrosc. 139, 77–83 (1990)

    Article  ADS  Google Scholar 

  19. C. Focsa, A. Poclet, B. Pinchemel, R.J. Le Roy, P.F. Bernath, J. Mol. Spectrosc. 203, 330–338 (2000)

    Article  ADS  Google Scholar 

  20. A. van Groenendael, M. Tudorie, C. Focsa, B. Pinchemel, P.F. Bernath, J. Mol. Spectrosc. 234, 255–263 (2005)

    Article  ADS  Google Scholar 

  21. K.D. Carlson, K. Kaiser, C. Moser, A.C. Wahl, J. Chem. Phys. 52, 4678–4691 (1970)

    Article  ADS  Google Scholar 

  22. H. Khalil, V. Brites, F.L. Quéré, C. Léonard, Chem. Phys. 386, 50–55 (2011)

    Article  Google Scholar 

  23. H. Khalil, F.L. Quéré, V. Brites, C. Léonard, J. Mol. Spectrosc. 271, 1–9 (2012)

    Article  ADS  Google Scholar 

  24. J.X. Cheng, H.J. Chen, X.J. Zhu, X.L. Cheng, J. Mol. Struct. 1084, 122–127 (2015)

    Article  ADS  Google Scholar 

  25. J.T. Stewart, M.N. Sullivan, M.C. Heaven, J. Mol. Spectrosc. 322, 18–21 (2016)

    Article  ADS  Google Scholar 

  26. S.N. Yurchenko, A. Blissett, U. Asari, M. Vasilios, C. Hill, J. Tennyson, MNRAS 456, 4524–4532 (2016)

    Article  ADS  Google Scholar 

  27. W.G. Sun, Q.C. Fan, H.D. Li, H. Feng, Spectrochim. Acta Part A 79, 35–38 (2011)

    Article  ADS  Google Scholar 

  28. Y.H. Jiang, W.G. Sun, Y. Zhang, J. Fu, Q.C. Fan, H.D. Li, H. Feng, Spectrochim. Acta Part A 153, 87–93 (2016)

    Article  ADS  Google Scholar 

  29. Q.C. Fan, C.P. Hu, J. Fu, J. Ma, Z.X. Fan, Y.G. Xu, H.D. Li, Y. Zhang, Spectrochim. Acta Part A 200, 290–297 (2018)

    Article  ADS  Google Scholar 

  30. G. Herzberg, Molecular Spectra and Molecular Structure (I): Spectra of Diatomic Molecules (Nostrand D Van Printing, New York, 1953)

    Google Scholar 

  31. J.L. Dunham, Phys. Rev. 41, 721–731 (1932)

    Article  ADS  Google Scholar 

  32. W.G. Sun, S.L. Hou, H. Feng, W.Y. Ren, J. Mol. Spectrosc. 215, 93–105 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by the Fund for Sichuan Distinguished Scientists of China (Grant No. 2019JDJQ0050), the Open Research Fund Program of the Collaborative Innovation Center of Extreme Optics (Grant No. KF2020003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ou Chen or Jiao Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, O., Lei, J. An analytical formula for predicting high-lying rovibrational term values of CaO molecule. Eur. Phys. J. D 75, 200 (2021). https://doi.org/10.1140/epjd/s10053-021-00182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00182-9

Navigation