Skip to main content
Log in

Electrophysiological biomarkers for deep brain stimulation outcomes in movement disorders: state of the art and future challenges

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Several neurological diseases are accompanied by rhythmic oscillatory dysfunctions in various frequency ranges and disturbed cross-frequency relationships on regional, interregional, and whole brain levels. Knowledge of these disease-specific oscillopathies is important mainly in the context of deep brain stimulation (DBS) therapy. Electrophysiological biomarkers have been used as input signals for adaptive DBS (aDBS) as well as preoperative outcome predictors. As movement disorders, particularly Parkinson’s disease (PD), are among the most frequent DBS indications, the current research of DBS is the most advanced in the movement disorders field. We reviewed the literature published mainly between 2010 and 2020 to identify the most important findings concerning the current evolution of electrophysiological biomarkers in DBS and to address future challenges for prospective research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alegre M, Alonso-Frech F, Rodríguez-Oroz MC, Guridi J, Zamarbide I, Valencia M, Manrique M, Obeso JA, Artieda J (2005) Movement-related changes in oscillatory activity in the human subthalamic nucleus: ipsilateral vs. contralateral movements. Eur J Neurosci 22:2315–2324

    Article  CAS  PubMed  Google Scholar 

  • Androulidakis AG, Kühn AA, Chen CC, Blomstedt P, Kempf F, Kupsch A, Schneider GH, Doyle L, Dowsey-Limousin P, Hariz MI, Brown P (2007) Dopaminergic therapy promotes lateralized motor activity in the subthalamic area in Parkinson’s disease. Brain 130(Pt 2):457–468

    Article  PubMed  Google Scholar 

  • Barow E, Neumann WJ, Brücke C, Huebl J, Horn A, Brown P et al (2014) Deep brain stimulation suppresses pallidal low frequency activity in patients with phasic dystonic movements. Brain 137(Pt 11):3012–3024

    Article  PubMed  Google Scholar 

  • Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8(1):67–81

    Article  PubMed  Google Scholar 

  • Bočková M, Rektor I (2019) Impairment of brain functions in Parkinson’s disease reflected by alterations in neural connectivity in EEG studies: a viewpoint. Clin Neurophysiol 130(2):239–247

    Article  PubMed  Google Scholar 

  • Bočková M, Chládek J, Jurák P, Halámek J, Rapcsak SZ, Baláž M, Chrastina J, Rektor I (2017) Oscillatory reactivity to effortful cognitive processing in the subthalamic nucleus and internal pallidum: a depth electrode EEG study. J Neural Transm 124(7):841–852

    Article  PubMed  Google Scholar 

  • Bočková M, Lamoš L, Klimeš P, Jurák P, Halámek J, Goldemundová S, Baláž M, Rektor I (2020) Suboptimal response to STN-DBS in Parkinson’s disease can be identified via reaction times in a motor cognitive paradigm. J Neural Transm 127(12):1579–1588

    Article  PubMed  Google Scholar 

  • Bonanni L, Thomas A, Tiraboschi P, Perfetti B, Varanese S, Onofrj M (2008) EEG comparisons in early Alzheimer’s disease, dementia with Lewy bodies and Parkinson’s disease with dementia patients with a 2 year follow-up. Brain 131(Pt 3):690–705

    Article  PubMed  Google Scholar 

  • Bouthour W, Mégevand P, Donoghue J, Lüscher C, Birbaumer N, Krack P (2019) Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond. Nat Rev Neurol 15(6):343–352

    Article  PubMed  Google Scholar 

  • Brown P (2006) Bad oscillations in Parkinson’s disease. J Neural Transm Suppl 70:27–30

    Google Scholar 

  • Cagnan H, Brittain JS, Little S, Foltynie T, Limousin P, Zrinzo L et al (2013) Phase dependent modulation of tremor amplitude in essential tremor through thalamic stimulation. Brain 136:3062–3075

    Article  PubMed  PubMed Central  Google Scholar 

  • Cagnan H, Pedrosa D, Little S, Pogosyan A, Cheeran B, Aziz T et al (2017) Stimulating at the right time: phase-specific deep brain stimulation. Brain 140(1):132–145

    Article  PubMed  Google Scholar 

  • Cagnan H, Denison T, McIntyre C, Brown P (2019) Emerging technologies for improved deep brain stimulation. Nat Biotechnol 37(9):1024–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castaño-Candamil S, Piroth T, Reinacher P, Sajonz B, Coenen VA, Tangermann M (2020) Identifying controllable cortical neural markers with machine learning for adaptive deep brain stimulation in Parkinson’s disease. Neuroimage Clin. https://doi.org/10.1016/j.nicl.2020.102376

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen CC, Hsu YT, Chan HL, Chiou SM, Tu PH, Lee ST et al (2010) Complexity of subthalamic 13–35 Hz oscillatory activity directly correlates with clinical impairment in patients with Parkinson’s disease. Exp Neurol 224(1):234–240

    Article  PubMed  Google Scholar 

  • Deffains M, Bergman H (2019) Parkinsonism-related β oscillations in the primate basal ganglia networks—recent advances and clinical implications. Parkinsonism Relat Disord 59:2–8

    Article  PubMed  Google Scholar 

  • Deffains M, Iskhakova L, Katabi S, Israel Z, Bergman H (2018) Longer β oscillatory episodes reliably identify pathological subthalamic activity in Parkinsonism. Mov Disord 33(10):1609–1618

    Article  CAS  PubMed  Google Scholar 

  • DeLong MR, Huang KT, Gallis J, Lokhnygina Y, Parente B, Hickey P et al (2014) Effect of advancing age on outcomes of deep brain stimulation for Parkinson disease. JAMA Neurol 71(10):1290–1295

    Article  PubMed  Google Scholar 

  • DiMarzio M, Madhavan R, Joel S, Hancu I, Fiveland E, Prusik J et al (2020) Use of functional magnetic resonance imaging to assess how motor phenotypes of Parkinson’s Disease respond to deep brain stimulation. Neuromodulation 23(4):515–524

    Article  PubMed  Google Scholar 

  • Ferreira D, Jelic V, Cavallin L, Oeksengaard AR, Snaedal J, Høgh P et al (2016) Electroencephalography is a good complement to currently established dementia biomarkers. Dement Geriatr Cogn Disord 42(1–2):80–92

    Article  CAS  PubMed  Google Scholar 

  • French Stimulation dans Trouble Obsessionnel Compulsif (STOC) Study Group, Welter ML, Burbaud P, Fernandez-Vidal S, Bardinet E, Coste J, Piallat B et al (2011) Basal ganglia dysfunction in OCD: subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy. Transl Psychiatry. https://doi.org/10.1038/tp.2011.5

    Article  Google Scholar 

  • Geraedts VJ, Koch M, Contarino MF et al (2021) Machine learning for automated EEG-based biomarkers of cognitive impairment during deep brain stimulation screening in patients with Parkinson’s disease. Clin Neurophysiol 132(5):1041–1048

    Article  CAS  PubMed  Google Scholar 

  • Habets JGV, Heijmans M, Kuijf ML, Janssen MLF, Temel Y, Kubben PL (2018) An update on adaptive deep brain stimulation in Parkinson’s disease. Mov Disord 33(12):1834–1843. https://doi.org/10.1002/mds.115

    Article  PubMed  PubMed Central  Google Scholar 

  • Herron JA, Thompson MC, Brown T, Chizeck HJ, Ojemann JG, Ko AL (2017) Chronic electrocorticography for sensing movement intention and closed-loop deep brain stimulation with wearable sensors in an essential tremor patient. J Neurosurg 127(3):580–587

    Article  PubMed  Google Scholar 

  • Herz DM, Little S, Pedrosa DJ, Tinkhauser G, Cheeran B, Foltynie T et al (2018) Mechanisms Underlying decision-making as revealed by deep-brain stimulation in patients with Parkinson’s disease. Curr Biol 28(8):1169-1178.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn A, Reich M, Vorwerk J, Li N, Wenzel G, Fang Q et al (2017) Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol 82(1):67–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Kühn AA, Kupsch A, Schneider GH, Brown P (2006) Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur J Neurosci 23(7):1956–1960

    Article  PubMed  Google Scholar 

  • Little S, Pogosyan A, Neal S, Zavala B, Zrinzo L, Hariz M et al (2013) Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol 74(3):449–457

    Article  PubMed  PubMed Central  Google Scholar 

  • Little S, Beudel M, Zrinzo L, Foltynie T, Limousin P, Hariz M et al (2016a) Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease. J Neurol Neurosurg Psychiatry 87(7):717–721

    Article  PubMed  Google Scholar 

  • Little S, Tripoliti E, Beudel M, Pogosyan A, Cagnan H, Herz D et al (2016b) Adaptive deep brain stimulation for Parkinson’s disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting. J Neurol Neurosurg Psychiatry 87(12):1388–1389

    Article  PubMed  Google Scholar 

  • López-Azcárate J, Tainta M, Rodríguez-Oroz MC, Valencia M, González R, Guridi J, Iriarte J, Obeso JA, Artieda J, Alegre M (2010) Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson’s disease. J Neurosci 30(19):6667–6677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lozano AM, Lipsman N, Bergman H, Brown P, Chabardes S, Chang JW et al (2019) Deep brain stimulation: current challenges and future directions. Nat Rev Neurol 15(3):148–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Markser A, Maier F, Lewis CJ, Dembek TA, Pedrosa D, Eggers C et al (2015) Deep brain stimulation and cognitive decline in Parkinson’s disease: the predictive value of electroencephalography. J Neurol 262:2275–2284

    Article  CAS  PubMed  Google Scholar 

  • McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL (2004) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115(6):1239–1248

    Article  PubMed  Google Scholar 

  • Meidahl AC, Moll CKE, van Wijk BCM, Gulberti A, Tinkhauser G, Westphal M et al (2019) Synchronised spiking activity underlies phase amplitude coupling in the subthalamic nucleus of Parkinson’s disease patients. Neurobiol Dis 127:101–113

    Article  PubMed  PubMed Central  Google Scholar 

  • Middlebrooks EH, Grewal SS, Stead M, Lundstrom BN, Worrell GA and Van Gompel JJ (2018) Differences in functional connectivity profiles as a predictor of response to anterior thalamic nucleus deep brain stimulation for epilepsy: a hypothesis for the mechanism of action and a potential biomarker for outcomes. Neurosurg Focus 45(2):E7

  • Molina R, Okun MS, Shute JB, Opri E, Rossi PJ, Martinez-Ramirez D et al (2018) Report of a patient undergoing chronic responsive deep brain stimulation for Tourette syndrome: proof of concept. J Neurosurg 129(2):308–314

    Article  PubMed  Google Scholar 

  • Moll CKE, Engel AK (2017) Phase matters: cancelling pathological tremor by adaptive deep brain stimulation. Brain 140(1):5–8

    Article  PubMed  Google Scholar 

  • Neumann WJ, Jha A, Bock A, Huebl J, Horn A, Schneider GH et al (2015) Cortico-pallidal oscillatory connectivity in patients with dystonia. Brain 138(Pt 7):1894–1906

    Article  PubMed  Google Scholar 

  • Neumann WJ, Horn A, Ewert S, Huebl J, Brücke C, Slentz C, Schneider GH, Kühn AA (2017) A localized pallidal physiomarker in cervical dystonia. Ann Neurol 82(6):912–924

    Article  CAS  PubMed  Google Scholar 

  • Neumann WJ, Huebl J, Brücke C, Lofredi R, Horn A, Saryyeva A et al (2018) Pallidal and thalamic neural oscillatory patterns in tourette’s syndrome. Ann Neurol 84(4):505–514

    Article  PubMed  Google Scholar 

  • Neumann WJ, Turner RS, Blankertz B, Mitchell T, Kühn AA, Richardson RM (2019) Toward Electrophysiology-based intelligent adaptive deep brain stimulation for movement disorders. Neurotherapeutics 16(1):105–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Onofrj M, Espay AJ, Bonanni L, Delli Pizzi S, Sensi SL (2019) Hallucinations, somatic-functional disorders of PD-DLB as expressions of thalamic dysfunction. Mov Disord 34(8):1100–1111

    Article  PubMed  PubMed Central  Google Scholar 

  • Oswal A, Litvak V, Brücke C, Huebl J, Schneider GH, Kühn AA, Brown P (2013) Cognitive factors modulate activity within the human subthalamic nucleus during voluntary movement in Parkinson’s disease. J Neurosci 33:15815–15826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oswal A, Beudel M, Zrinzo L, Limousin P, Hariz M, Foltynie T, Litvak V, Brown P et al (2016) Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease. Brain 139(Pt 5):1482–1496

    Article  PubMed  PubMed Central  Google Scholar 

  • Piña-Fuentes D, Beudel M, Little S, van Zijl J, Elting JW, Oterdoom DLM et al (2018) Toward adaptive deep brain stimulation for dystonia. Neurosurg Focus 45(2):E3

    Article  PubMed  Google Scholar 

  • Rappel P, Marmor O, Bick AS, Arkadir D, Linetsky E, Castrioto A et al (2018) Subthalamic theta activity: a novel human subcortical biomarker for obsessive compulsive disorder. Transl Psychiatry. https://doi.org/10.1038/s41398-018-0165-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosa M, Arlotti M, Ardolino G, Cogiamanian F, Marceglia S, Di Fonzo A et al (2015) Adaptive deep brain stimulation in a freely moving Parkinsonian patient. Mov Disord 30(7):1003–1005

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuepbach WMM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L et al (2013) Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med 368(7):610–622

    Article  CAS  PubMed  Google Scholar 

  • Sherdil A, Chabardès S, David O, Piallat B (2020) Coherence between the hippocampus and anterior thalamic nucleus as a tool to improve the effect of neurostimulation in temporal lobe epilepsy: An experimental study. Brain Stimul 13(6):1678–1686

  • Swann NC, de Hemptinne C, Thompson MC, Miocinovic S, Miller AM, Gilron R et al (2018) Adaptive deep brain stimulation for Parkinson’s disease using motor cortex sensing. J Neural Eng. https://doi.org/10.1088/1741-2552/aabc9b

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan H, Debarros J, He S, Pogosyan A, Aziz TZ, Huang Y et al (2019) Decoding voluntary movements and postural tremor based on thalamic LFPs as a basis for closed-loop stimulation for essential tremor. Brain Stimul 12(4):858–867

    Article  PubMed  PubMed Central  Google Scholar 

  • Telkes I, Viswanathan A, Jimenez-Shahed J, Abosch A, Ozturk M, Gupte A, Jankovic J, Ince NF (2018) Local field potentials of subthalamic nucleus contain electrophysiological footprints of motor subtypes of Parkinson’s disease. Proc Natl Acad Sci U S A 115(36):E8567–E8576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tinkhauser G, Pogosyan A, Debove I, Nowacki A, Shah SA, Seidel K et al (2018) Directional local field potentials: a tool to optimize deep brain stimulation. Mov Disord 33(1):159–164

    Article  PubMed  Google Scholar 

  • Yakufujiang M, Higuchi Y, Aoyagi K, Yamamoto T, Abe M, Okahara Y et al (2019) Predictive potential of preoperative electroencephalogram for neuropsychological change following subthalamic nucleus deep brain stimulation in Parkinson’s disease. Acta Neurochir 161(10):2049–2058

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Anne Johnson for English language assistance.

Funding

This work has been financially supported by grants: Czech science foundation GAČR 21-25953S and Czech health research council AZV NU21-04–00445.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Rektor.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bočková, M., Rektor, I. Electrophysiological biomarkers for deep brain stimulation outcomes in movement disorders: state of the art and future challenges. J Neural Transm 128, 1169–1175 (2021). https://doi.org/10.1007/s00702-021-02381-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-021-02381-5

Keywords

Navigation