Skip to main content
Log in

Quantifying F and Cl concentrations in granitic melts from apatite inclusions in zircon

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Apatite inclusions hosted by zircon offer a means to probe the magmatic history of granitic rocks and better constrain the volatile budgets of crystallising granitic melts. Building on recently developed F–Cl–OH partitioning models for apatite and coexisting melt, we outline an approach for estimating the melt concentrations of F and Cl from the composition of apatite inclusions in zircon, constrained by Ti-in-zircon crystallisation temperatures. The melts in equilibrium with apatite inclusions in zircon for the ‘I-type’ Jindabyne, Why Worry and Cobargo granitic suites of the Lachlan Orogen (eastern Australia), have Cl concentrations of 20–2880 ppm and F concentrations of 65–575 ppm. Variations in melt Cl and F concentrations between the granitic suites is attributed to differences in source compositions, specifically the relative contribution of F-rich turbiditic sediments and Cl-rich juvenile arc magmas. Within individual granitic suites, the calculated melt F and Cl concentrations decrease with magmatic differentiation and falling melt temperatures, and this appears to reflect the partitioning of Cl and F into biotite and hornblende, and into exsolving aqueous fluids. This study demonstrates that apatite-melt exchange coefficients for F, Cl and OH can be applied to apatite inclusions in zircon to quantify the F and Cl content of the melt, without additional context from the host rock samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

Data available in electronic supplementary material.

Code availability

Not applicable.

References

  • Anderson AT Jr, Newman S, Williams SN, Druitt TH, Skirius C, Stolper E (1989) H2O, CO2, CI, and gas in Plinian and ash-flow Bishop rhyolite. Geology 17:221–225. https://doi.org/10.1130/0091-7613(1989)017%3c0221:HOCCAG%3e2.3.CO;2

    Article  Google Scholar 

  • Baker DR, Alletti M (2012) Fluid saturation and volatile partitioning between melts and hydrous fluids in crustal magmatic systems: the contribution of experimental measurements and solubility models. Earth Sci Rev 114(3–4):298–324. https://doi.org/10.1016/j.earscirev.2012.06.005

    Article  Google Scholar 

  • Barnes JD, Manning CE, Scambelluri M, Selverstone J (2018) The behavior of halogens during subduction-zone processes. The role of halogens in terrestrial and extraterrestrial geochemical processes. Springer, pp 545–590

    Chapter  Google Scholar 

  • Baumer A, Ganteaume M, Klee WE (1985) Determination of OH ions in hydroxyfluorapatites by infrared spectroscopy. Bull Minér 108:145–152

    Article  Google Scholar 

  • Bell EA, Boehnke P, Hopkins-Wielicki MD, Harrison TM (2015) Distinguishing primary and secondary inclusion assemblages in Jack Hills zircons. Lithos 234–235:15–26. https://doi.org/10.1016/j.lithos.2015.07.014

    Article  Google Scholar 

  • Bell EA, Boehnke P, Harrison TM, Wielicki MM (2018) Mineral inclusion assemblage and detrital zircon provenance. Chem Geol 477:151–160. https://doi.org/10.1016/j.chemgeo.2017.12.024

    Article  Google Scholar 

  • Bénard A, Koga K, Shimizu N, Kendrick M, Ionov D, Nebel O, Arculus RJ (2017) Chlorine and fluorine partition coefficients and abundances in sub-arc mantle xenoliths (Kamchatka, Russia): implications for melt generation and volatile recycling processes in subduction zones. Geochim Cosmochim Acta 199:324–350

    Article  Google Scholar 

  • Boyce JW, Hervig RL (2009) Apatite as a monitor of late-stage magmatic processes at Volcán Irazú, Costa Rica. Contrib Miner Petrol 157:135. https://doi.org/10.1007/s00410-008-0325-x

    Article  Google Scholar 

  • Boyce JW, Liu Y, Rossman GR, Guan Y, Eiler JM, Stolper EM, Taylor LA (2010) Lunar apatite with terrestrial volatile abundances. Nature 466:466–469. https://doi.org/10.1038/nature09274

    Article  Google Scholar 

  • Boyce JW, Tomlinson SM, McCubbin FM, Greenwood JP, Treiman AH (2014) The lunar apatite paradox. Science 344:400–402. https://doi.org/10.1038/nature09274

    Article  Google Scholar 

  • Brenan J (1993) Kinetics of fluorine, chlorine and hydroxyl exchange in fluorapatite. Chem Geol 110:195–210. https://doi.org/10.1016/0009-2541(93)90254-G

    Article  Google Scholar 

  • Bruand E, Storey C, Fowler M (2016) An apatite for progress: inclusions in zircon and titanite constrain petrogenesis and provenance. Geology. https://doi.org/10.1130/G37301.1

    Article  Google Scholar 

  • Chappell BW, White AJR (1974) Two constrasting granite types. Pac Ged 8:173–174

    Google Scholar 

  • Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Aust J Earth Sci 48:489–499. https://doi.org/10.1046/j.1440-0952.2001.00882.x

    Article  Google Scholar 

  • Chevychelov VY, Botcharnikov R, Holtz F (2008) Experimental study of fluorine and chlorine contents in mica (biotite) and their partitioning between mica, phonolite melt, and fluid. Geochem Int 46(11):1081–1089

    Article  Google Scholar 

  • Collins W (1996) Lachlan Fold Belt granitoids: products of three-component mixing. Trans R Soc Edinburgh-Earth Sci 87:171–182

    Article  Google Scholar 

  • Collins W (1998) Evaluation of petrogenetic models for Lachlan Fold Belt granitoids: implications for crustal architecture and tectonic models. Aust J Earth Sci 45:483–500

    Article  Google Scholar 

  • Doherty AL, Webster JD, Goldoff BA, Piccoli PM (2014) Partitioning behavior of chlorine and fluorine in felsic melt–fluid(s)–apatite systems at 50MPa and 850–950°C. Chem Geol 384:94–111. https://doi.org/10.1016/j.chemgeo.2014.06.023

    Article  Google Scholar 

  • Dolejš D, Baker DR (2004) Thermodynamic analysis of the system Na2O-K2O-CaO-Al2O3-SiO2-H2O-F2O−1: Stability of fluorine-bearing minerals in felsic igneous suites. Contrib Miner Petrol 146:762–778. https://doi.org/10.1007/s00410-003-0533-3

    Article  Google Scholar 

  • Dolejš D, Zajacz Z (2018) Halogens in silicic magmas and their hydrothermal systems. The role of halogens in terrestrial and extraterrestrial geochemical processes. Springer, pp 431–543

    Chapter  Google Scholar 

  • Donovan JJ, Tingle TN (1996) An improved mean atomic number correction for quantitative microanalysis. J Microsc 2:1–7

    Google Scholar 

  • Dunbar NW, Hervig RL (1992) Petrogenesis and volatile stratigraphy of the Bishop Tuff: evidence from melt inclusion analysis. J Geophys Res 97:15129–15150

    Article  Google Scholar 

  • Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Miner Petrol 154:429–437. https://doi.org/10.1007/s00410-007-0201-0

    Article  Google Scholar 

  • Filiberto J, Dasgupta R (2011) Fe2+–Mg partitioning between olivine and basaltic melts: applications to genesis of olivine-phyric shergottites and conditions of melting in the Martian interior. Earth Planet Sci Lett 304:527–537. https://doi.org/10.1016/j.epsl.2011.02.029

    Article  Google Scholar 

  • Foster DA, Gray DR (2000) Evolution and Structure of the Lachlan Fold Belt (Orogen) of Eastern Australia. Annu Rev Earth Planet Sci 28:47–80. https://doi.org/10.1146/annurev.earth.28.1.47

    Article  Google Scholar 

  • Frezzotti M-L (2001) Silicate-melt inclusions in magmatic rocks: applications to petrology. Lithos 55:273–299

    Article  Google Scholar 

  • Gao S, Luo T-C, Zhang B-R, Zhang H-F, Han Y-w, Zhao Z-D, Hu Y-K (1998) Chemical composition of the continental crust as revealed by studies in East China. Geochim Cosmochim Acta 62:1959–1975

    Article  Google Scholar 

  • Goldoff B, Webster JD, Harlov DE (2012) Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens. Am Miner 97(7):1103–1115

    Article  Google Scholar 

  • Gray C (1990) A strontium isotopic traverse across the granitic rocks of southeastern Australia: petrogenetic and tectonic implications. Aust J Earth Sci 37:331–349

    Article  Google Scholar 

  • Gualda GA, Ghiorso MS, Lemons RV, Carley TL (2012) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol 53:875–890. https://doi.org/10.1093/petrology/egr080

    Article  Google Scholar 

  • Hanley JJ, Koga KT (2018) Halogens in terrestrial and cosmic geochemical systems: abundances, geochemical behaviors, and analytical methods. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer International Publishing, Cham, pp 21–121. https://doi.org/10.1007/978-3-319-61667-4_2

    Chapter  Google Scholar 

  • Harlov DE, Aranovich L (2018) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. The role of halogens in terrestrial and extraterrestrial geochemical processes. Springer, pp 1–19

    Chapter  Google Scholar 

  • Harrison TM, Watson EB (1984) The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1467–1477. https://doi.org/10.1016/0016-7037(84)90403-4

    Article  Google Scholar 

  • Hellstrom J, Paton C, Woodhead J, Hergt J (2008) Iolite: software for spatially resolved LA-(quad and MC) ICPMS analysis. Mineral Assoc Can Short Course Ser 40:343–348

    Google Scholar 

  • Hildreth EW (1977) The magma chamber of the Bishop Tuff: granidents in temperature, pressure, and composition. Dissertation. University of California

    Google Scholar 

  • Icenhower JP, London D (1997) Partitioning of fluorine and chlorine between biotite and granitic melt: experimental calibration at 200 MPa H2O. Contrib Miner Petrol 127:17–29

    Article  Google Scholar 

  • Ito E, Harris DM, Anderson AT (1983) Alteration of oceanic crust and geologic cycling of chlorine and water. Geochim Cosmochim Acta 47:1613–1624. https://doi.org/10.1016/0016-7037(83)90188-6

    Article  Google Scholar 

  • Iveson AA, Webster JD, Rowe MC, Neill OK (2017) Major element and halogen (F, Cl) mineral–melt–fluid partitioning in hydrous rhyodacitic melts at shallow crustal conditions. J Petrol 58(12):2465–2492

    Article  Google Scholar 

  • Jennings ES, Marschall HR, Hawkesworth CJ, Storey CD (2011) Characterization of magma from inclusions in zircon: apatite and biotite work well, feldspar less so. Geology 39:863–866. https://doi.org/10.1130/G32037.1

    Article  Google Scholar 

  • Jochum KP et al (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res 35:397–429. https://doi.org/10.1111/j.1751-908X.2011.00120.x

    Article  Google Scholar 

  • Keay S, Steele D, Compston W (1999) Identifying granite sources by SHRIMP U-Pb zircon geochronology: an application to the Lachlan foldbelt. Contrib Miner Petrol 137:323–341

    Article  Google Scholar 

  • Kemp AIS, Whitehouse MJ, Hawkesworth CJ, Alarcon MK (2005) A zircon U-Pb study of metaluminous (I-type) granites of the Lachlan Fold Belt, southeastern Australia: implications for the high/low temperature classification and magma differentiation processes. Contrib Miner Petrol 150:230–249. https://doi.org/10.1007/s00410-005-0019-6

    Article  Google Scholar 

  • Kemp AIS et al (2007) Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science 315:980–983. https://doi.org/10.1126/science.1136154

    Article  Google Scholar 

  • Ketcham RA (2015) Technical Note: calculation of stoichiometry from EMP data for apatite and other phases with mixing on monovalent anion sites†. Am Miner 100:1620–1623. https://doi.org/10.2138/am-2015-5171

    Article  Google Scholar 

  • Lecumberri-Sanchez P, Bodnar RJ (2018) Halogen geochemistry of ore deposits: contributions towards understanding sources and processes. The role of halogens in terrestrial and extraterrestrial geochemical processes. Springer, pp 261–305

    Chapter  Google Scholar 

  • Li W, Costa F (2020) A thermodynamic model for F-Cl-OH partitioning between silicate melts and apatite including non-ideal mixing with application to constraining melt volatile budgets. Geochim Cosmochim Acta 269:203–222. https://doi.org/10.1016/j.gca.2019.10.035

    Article  Google Scholar 

  • Li H, Hermann J (2015) Apatite as an indicator of fluid salinity: an experimental study of chlorine and fluorine partitioning in subducted sediments. Geochim Cosmochim Acta 166:267–297. https://doi.org/10.1016/j.gca.2015.06.029

    Article  Google Scholar 

  • Li H, Hermann J (2017) Chlorine and fluorine partitioning between apatite and sediment melt at 2.5 GPa, 800 °C: a new experimentally derived thermodynamic model. Am Miner 102:580–594. https://doi.org/10.2138/am-2017-5891

    Article  Google Scholar 

  • London D (1997) Estimating abundances of volatile and other mobile components in evolved silicic melts through mineral-melt equilibria. J Petrol 38:1691–1706. https://doi.org/10.1093/petroj/38.12.1691

    Article  Google Scholar 

  • Mathez EA, Webster JD (2005) Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid. Geochim Cosmochim Acta 69:1275–1286. https://doi.org/10.1016/j.gca.2004.08.035

    Article  Google Scholar 

  • Matjuschkin V, Blundy JD, Brooker RA (2016) The effect of pressure on sulphur speciation in mid-to deep-crustal arc magmas and implications for the formation of porphyry copper deposits. Contrib Miner Petrol 171(7):1–25

    Article  Google Scholar 

  • McCubbin FM, Steele A, Hauri EH, Nekvasil H, Yamashita S, Hemley RJ (2010) Nominally hydrous magmatism on the Moon. Proc Natl Acad Sci 107:11223–11228. https://doi.org/10.1073/pnas.1006677107

    Article  Google Scholar 

  • McCubbin FM et al (2015) Experimental investigation of F, Cl, and OH partitioning between apatite and Fe-rich basaltic melt at 1.0–1.2 GPa and 950–1000 °C†. Am Miner 100:1790–1802. https://doi.org/10.2138/am-2015-5233

    Article  Google Scholar 

  • Pan Y, Fleet ME (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Rev Miner Geochem 48:13–49

    Article  Google Scholar 

  • Piccoli P, Candela P (1994) Apatite in felsic rocks: a model for the estimation of initial halogen concentrations in the Bishop Tuff (Long Valley) and Tuolumne Intrusive Suite (Sierra Nevada batholith) magmas. Am J Sci 294:92–135

    Article  Google Scholar 

  • Piccoli P, Candela P (2002) Apatite in igneous systems. Rev Mineral Geochem 48:255–292. https://doi.org/10.2138/rmg.2002.48.6

    Article  Google Scholar 

  • Portnyagin M, Hoernle K, Plechov P, Mironov N, Khubunaya S (2007) Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet Sci Lett 255:53–69. https://doi.org/10.1016/j.epsl.2006.12.005

    Article  Google Scholar 

  • Riker J, Humphreys MCS, Brooker RA, De Hoog JCM, EIMF (2018) First measurements of OH-C exchange and temperature-dependent partitioning of OH and halogens in the system apatite–silicate melt. Am Miner 103:260–270. https://doi.org/10.2138/am-2018-6187CCBY

    Article  Google Scholar 

  • Roeder P, Emslie R (1970) Olivine-liquid equilibrium. Contrib Miner Petrol 29:275–289

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust vol 3. Treatise on geochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Sadofsky SJ, Portnyagin M, Hoernle K, van den Bogaard P (2008) Subduction cycling of volatiles and trace elements through the Central American volcanic arc: evidence from melt inclusions. Contrib Miner Petrol 155:433–456

    Article  Google Scholar 

  • Scaillet B, Macdonald R (2003) Experimental constraints on the relationships between peralkaline rhyolites of the Kenya Rift Valley. J Petrol 44(10):1867–1894

    Article  Google Scholar 

  • Schiller D, Finger F (2019) Application of Ti-in-zircon thermometry to granite studies: problems and possible solutions. Contrib Miner Petrol 174:51. https://doi.org/10.1007/s00410-019-1585-3

    Article  Google Scholar 

  • Scott JAJ, Humphreys MCS, Mather TA, Pyle DM, Stock MJ (2015) Insights into the behaviour of S, F, and Cl at Santiaguito Volcano, Guatemala, from apatite and glass. Lithos 232:375–394. https://doi.org/10.1016/j.lithos.2015.07.004

    Article  Google Scholar 

  • Sharpe MS (2019) Crystal-specific insights from the rhyolite eruptive deposits into volatile element transfer in the magmatic system below Taupō volcano. Dissertation. Victoria University of Wellington

    Google Scholar 

  • Stock MJ, Humphreys MCS, Smith VC, Johnson RD, Pyle DM (2015) New constraints on electron-beam induced halogen migration in apatite. Am Miner 100:281–293

    Article  Google Scholar 

  • Stock MJ, Humphreys MCS, Smith VC, Isaia R, Pyle DM (2016) Late-stage volatile saturation as a potential trigger for explosive volcanic eruptions. Nature Geosci 9:249–254. https://doi.org/10.1038/ngeo2639

    Article  Google Scholar 

  • Stock MJ, Humphreys MCS, Smith VC, Isaia R, Brooker RA, Pyle DM (2018) Tracking volatile behaviour in sub-volcanic plumbing systems using apatite and glass: insights into pre-eruptive processes at Campi Flegrei, Italy. J Petrol 59:2463–2492. https://doi.org/10.1093/petrology/egy020

    Article  Google Scholar 

  • Stormer JC, Pierson ML, Tacker RC (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. Am Miner 78:641–648

    Google Scholar 

  • Straub SM, Layne GD (2003) The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: implications for volatile recycling in subduction zones. Geochim Cosmochim Acta 67:4179–4203. https://doi.org/10.1016/S0016-7037(03)00307-7

    Article  Google Scholar 

  • Szymanowski D et al (2018) Isotope-dilution anchoring of zircon reference materials for accurate Ti-in-zircon thermometry. Chem Geol 481:146–154. https://doi.org/10.1016/j.chemgeo.2018.02.001

    Article  Google Scholar 

  • Toplis M (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Miner Petrol 149:22–39

    Article  Google Scholar 

  • Turekian KK, Wedephol KH (1961) Distribution of the elements in some major units of the earth’s crust. GSA Bull 72:175–192

    Article  Google Scholar 

  • Van den Bleeken G, Koga KT (2015) Experimentally determined distribution of fluorine and chlorine upon hydrous slab melting, and implications for F-Cl cycling through subduction zones. Geochim Cosmochim Acta 171:353–373

    Article  Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geoth Res 140:217–240. https://doi.org/10.1016/j.jvolgeores.2004.07.023

    Article  Google Scholar 

  • Wang KL, Zhang Y, Naab FU (2011) Calibration for IR measurements of OH in apatite. Am Miner 96:1392–1397

    Article  Google Scholar 

  • Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Miner Petrol 151:413. https://doi.org/10.1007/s00410-006-0068-5

    Article  Google Scholar 

  • Webster JD, Holloway JR (1990) Partitioning of F and Cl between magmatic hydrothermal fluids and highly evolved granitic magmas. Ore-bearing granite systems; petrogenesis and mineralizing processes, vol 246. Geological Society of America Special Papers, pp 21–34. https://doi.org/10.1130/SPE246-p21

    Chapter  Google Scholar 

  • Webster JD, Tappen CM, Mandeville CW (2009) Partitioning behavior of chlorine and fluorine in the system apatite–melt–fluid. II: felsic silicate systems at 200 MPa. Geochim Cosmochim Acta 73:559–581. https://doi.org/10.1016/j.gca.2008.10.034

    Article  Google Scholar 

  • Webster JD, Goldoff BA, Flesch RN, Nadeau PA, Silbert ZW (2017) Hydroxyl, Cl, and F partitioning between high-silica rhyolitic melts-apatite-fluid(s) at 50–200 MPa and 700–1000 °C. Am Miner 102:61–74. https://doi.org/10.2138/am-2017-5746

    Article  Google Scholar 

  • Wysoczanski RJ, Wright IC, Gamble JA, Hauri EH, Luhr JF, Eggins SM, Handler MR (2006) Volatile contents of Kermadec Arc-Havre Trough pillow glasses: fingerprinting slab-derived aqueous fluids in the mantle sources of arc and back-arc lavas. J Volcanol Geoth Res 152:51–73. https://doi.org/10.1016/j.jvolgeores.2005.04.021

    Article  Google Scholar 

  • Young E, Myers A, Munson E, Conklin N (1969) Mineralogy and geochemistry of fluorapatite from Cerro de Mercado. US Geological Survey Professional Paper, Durango, Mexico, pp D84–D93

    Google Scholar 

  • Zhang C, Holtz F, Ma C, Wolff PE, Li X (2012) Tracing the evolution and distribution of F and Cl in plutonic systems from volatile-bearing minerals: a case study from the Liujiawa pluton (Dabie orogen, China). Contrib Miner Petrol 164:859–879

    Article  Google Scholar 

Download references

Acknowledgements

LKL gratefully acknowledges the financial support of the Society of Economic Geologists Foundation, through a Hugo Dummett Mineral Discovery Fund student research grant. CJH acknowledges a Robert and Maude Gledden Senior Visiting Fellowship at the University of Western Australia in 2019, and an Emeritus Fellowship from the Leverhulme Trust EM-2017-047\4. We are grateful to J. Craven, R. Hinton and C. Talavera for their assistance with secondary ion mass spectrometry analysis at the Edinburgh Ion Microprobe Facility. We also thank J. Hammerli for assistance with LA-ICPMS analyses, conducted at The University of Western Australia with instrumentation part funded by the Australian Research Council (LE100100203 and LE150100013). We acknowledge the facilities, and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, a facility funded by the University, State and Commonwealth Governments.

Funding

This research was supported by a grant from the Hugo Dummett Mineral Discovery Fund, awarded by the Society of Economic Geologists Foundation.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Lillian A. Kendall-Langley.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Daniela Rubatto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kendall-Langley, L.A., Kemp, A.I.S., Hawkesworth, C.J. et al. Quantifying F and Cl concentrations in granitic melts from apatite inclusions in zircon. Contrib Mineral Petrol 176, 58 (2021). https://doi.org/10.1007/s00410-021-01813-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-021-01813-5

Keywords

Navigation