Skip to main content
Log in

Soft Directional Adhesion Gripper Fabricated by 3D Printing Process for Gripping Flexible Printed Circuit Boards

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Conventional industrial grippers that grip a flat object generally hold objects by using suction or electrostatic force. However, these grippers have limitations when gripping thin, flat, and flexible objects, such as films and flexible printed circuit boards (FPCBs), due to their undefined shape and high flexibility. This paper proposes a soft gripper that can grip flexible and thin objects by utilizing directional adhesives and a compliant mechanism. The directional adhesive pad is fabricated by a three-dimensional (3D) printing process for cost-effective and environment-friendly manufacturing. However, fabrication by 3D printing has disadvantages in terms of the quality of the adhesive surface. An additional coating process presented in this study compensates for the low resolution of 3D printing by improving smoothness. Moreover, an additional coating process is a simple approach for developing directional adhesives with enhanced adhesion strength by deforming the tip shape without a sophisticated fabrication process. The adhesion of adhesives with curved pillars is enhanced compared to adhesives with simple wedge-shaped pillars. The maximum normal adhesion force of the gripper is measured to be 0.47 N (1.57 kPa), and 95% of the initial adhesion is retained after ten thousand attachment/detachment cycles. The adhesion force can be recovered by the cleaning process when the contaminant is attached to the adhesive. The final demonstration shows that the gripper can handle various objects for potential applications such as in green-environmental industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Shintake, J., Cacucciolo, V., Floreano, D., & Shea, H. (2018). Soft robotic grippers. Advanced Materials, 30(29), 1707035. https://doi.org/10.1002/adma.201707035

    Article  Google Scholar 

  2. Kim, S., Laschi, C., & Trimmer, B. (2013). Soft robotics: A bioinspired evolution in robotics. Trends in Biotechnology, 31(5), 287–294. https://doi.org/10.1016/j.tibtech.2013.03.002

    Article  Google Scholar 

  3. Rus, D., & Tolley, M. T. (2015). Design, fabrication and control of soft robots. Nature, 521(7553), 467–475. https://doi.org/10.1038/nature14543

    Article  Google Scholar 

  4. Galloway, K. C., Becker, K. P., Phillips, B., Kirby, J., Licht, S., Tchernov, D., et al. (2016). Soft robotic grippers for biological sampling on deep reefs. Soft Robotics, 3(1), 23–33. https://doi.org/10.1089/soro.2015.0019

    Article  Google Scholar 

  5. Wang, W., & Ahn, S.-H. (2017). Shape memory alloy-based soft gripper with variable stiffness for compliant and effective grasping. Soft Robotics, 4(4), 379–389. https://doi.org/10.1089/soro.2016.0081

    Article  Google Scholar 

  6. Amend, J., & Lipson, H. (2017). The JamHand: Dexterous manipulation with minimal actuation. Soft Robotics, 4(1), 70–80. https://doi.org/10.1089/soro.2016.0037

    Article  Google Scholar 

  7. Tang, Y., Zhang, Q., Lin, G., & Yin, J. (2018). Switchable adhesion actuator for amphibious climbing soft robot. Soft Robotics, 5(5), 592–600. https://doi.org/10.1089/soro.2017.0133

    Article  Google Scholar 

  8. Zhuo, S., Zhao, Z., Xie, Z., Hao, Y., Xu, Y., Zhao, T., et al. (2020). Complex multiphase organohydrogels with programmable mechanics toward adaptive soft-matter machines. Science Advances, 6(5), eaax1464. https://doi.org/10.1126/sciadv.aax1464

    Article  Google Scholar 

  9. Baik, S., Kim, J., Lee, H. J., Lee, T. H., & Pang, C. (2018). Highly adaptable and biocompatible octopus-like adhesive patches with meniscus-controlled unfoldable 3D microtips for underwater surface and hairy skin. Advanced Science, 5(8), 1800100. https://doi.org/10.1002/advs.201800100

    Article  Google Scholar 

  10. Baik, S., Kim, D. W., Park, Y., Lee, T.-J., Ho Bhang, S., & Pang, C. (2017). A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature, 546(7658), 396–400. https://doi.org/10.1038/nature22382

    Article  Google Scholar 

  11. Schaler, E. W., Ruffatto, D., Glick, P., White, V., & Parness, A. (2017). An electrostatic gripper for flexible objects. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), Vancouver, BC, Canada (pp. 1172–1179). IEEE. https://doi.org/10.1109/IROS.2017.8202289

  12. Shintake, J., Rosset, S., Schubert, B., Floreano, D., & Shea, H. (2016). Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Advanced Materials, 28(2), 231–238. https://doi.org/10.1002/adma.201504264

    Article  Google Scholar 

  13. Autumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Chan, W. P., Kenny, T. W., et al. (2000). Adhesive force of a single gecko foot-hair. Nature, 405(6787), 681–685. https://doi.org/10.1038/35015073

    Article  Google Scholar 

  14. Autumn, K., Sitti, M., Liang, Y. A., Peattie, A. M., Hansen, W. R., Sponberg, S., et al. (2002). Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences, 99(19), 12252–12256. https://doi.org/10.1073/pnas.192252799

    Article  Google Scholar 

  15. Hansen, W. R., & Autumn, K. (2005). Evidence for self-cleaning in gecko setae. Proceedings of the National Academy of Sciences of the United States of America, 102(2), 385–389. https://doi.org/10.1073/pnas.0408304102

    Article  Google Scholar 

  16. Autumn, K., Dittmore, A., Santos, D., Spenko, M., & Cutkosky, M. (2006). Frictional adhesion: A new angle on gecko attachment. Journal of Experimental Biology, 209(18), 3569–3579. https://doi.org/10.1242/jeb.02486

    Article  Google Scholar 

  17. Geim, A. K., Dubonos, S. V., Grigorieva, I. V., Novoselov, K. S., Zhukov, A. A., & Shapoval, S. Y. (2003). Microfabricated adhesive mimicking gecko foot-hair. Nature Materials, 2(7), 461–463. https://doi.org/10.1038/nmat917

    Article  Google Scholar 

  18. Zhou, M., Pesika, N., Zeng, H., Tian, Y., & Israelachvili, J. (2013). Recent advances in gecko adhesion and friction mechanisms and development of gecko-inspired dry adhesive surfaces. Friction, 1(2), 114–129. https://doi.org/10.1007/s40544-013-0011-5

    Article  Google Scholar 

  19. Ko, H., Yi, H., & Jeong, H. E. (2017). Wall and ceiling climbing quadruped robot with superior water repellency manufactured using 3d Printing (Uniclimb). International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 273–280. https://doi.org/10.1007/s40684-017-0033-y

    Article  Google Scholar 

  20. Kang, S. M. (2016). Bioinspired design and fabrication of green-environmental dry adhesive with robust wide-tip shape. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(2), 189–192. https://doi.org/10.1007/s40684-016-0025-3

    Article  Google Scholar 

  21. Kim, S., & Sitti, M. (2006). Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives. Applied Physics Letters, 89(26), 261911. https://doi.org/10.1063/1.2424442

    Article  Google Scholar 

  22. Song, S., & Sitti, M. (2014). Soft grippers using micro-fibrillar adhesives for transfer printing. Advanced Materials, 26(28), 4901–4906. https://doi.org/10.1002/adma.201400630

    Article  Google Scholar 

  23. Kim, J. H., Jeong, H. E., Kim, S. M., & Kang, S. M. (2020). Enhanced directional adhesion behavior of mushroom-shaped microline arrays. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(1), 239–245. https://doi.org/10.1007/s40684-019-00112-6

    Article  Google Scholar 

  24. Seong, M., Lee, J., Hwang, I., & Jeong, H. E. (2019). Significant adhesion enhancement of bioinspired dry adhesives by simple thermal treatment. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(3), 587–599. https://doi.org/10.1007/s40684-019-00062-z

    Article  Google Scholar 

  25. Lee, J., Fearing, R. S., & Komvopoulos, K. (2008). Directional adhesion of gecko-inspired angled microfiber arrays. Applied Physics Letters, 93(19), 191910. https://doi.org/10.1063/1.3006334

    Article  Google Scholar 

  26. Parness, A., Soto, D., Esparza, N., Gravish, N., Wilkinson, M., Autumn, K., et al. (2009). A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, directionality and long lifetime. Journal of The Royal Society Interface, 6(41), 1223–1232. https://doi.org/10.1098/rsif.2009.0048

    Article  Google Scholar 

  27. Murphy, M. P., Aksak, B., & Sitti, M. (2009). Gecko-inspired directional and controllable adhesion. Small (Weinheim an der Bergstrasse, Germany), 5(2), 170–175. https://doi.org/10.1002/smll.200801161

    Article  Google Scholar 

  28. Santos, D., Spenko, M., Parness, A., Kim, S., & Cutkosky, M. (2007). Directional adhesion for climbing: Theoretical and practical considerations. Journal of Adhesion Science and Technology, 21(12–13), 1317–1341. https://doi.org/10.1163/156856107782328399

    Article  Google Scholar 

  29. Kim, S., Spenko, M., Trujillo, S., Heyneman, B., Santos, D., & Cutkosky, M. R. (2008). Smooth vertical surface climbing with directional adhesion. IEEE Transactions on Robotics, 24(1), 65–74. https://doi.org/10.1109/TRO.2007.909786

    Article  Google Scholar 

  30. Hawkes, E. W., Eason, E. V., Asbeck, A. T., & Cutkosky, M. R. (2013). The gecko’s toe: Scaling directional adhesives for climbing applications. IEEE/ASME Transactions on Mechatronics, 18(2), 518–526. https://doi.org/10.1109/TMECH.2012.2209672

    Article  Google Scholar 

  31. Jiang, H., Hawkes, E. W., Fuller, C., Estrada, M. A., Suresh, S. A., Abcouwer, N., et al. (2017). A robotic device using gecko-inspired adhesives can grasp and manipulate large objects in microgravity. Science Robotics, 2(7), eaan4545. https://doi.org/10.1126/scirobotics.aan4545

    Article  Google Scholar 

  32. Modabberifar, M., & Spenko, M. (2018). A shape memory alloy-actuated gecko-inspired robotic gripper. Sensors and Actuators A: Physical, 276, 76–82. https://doi.org/10.1016/j.sna.2018.04.018

    Article  Google Scholar 

  33. Glick, P., Suresh, S. A., Ruffatto, D., Cutkosky, M., Tolley, M. T., & Parness, A. (2018). A soft robotic gripper with gecko-Inspired adhesive. IEEE Robotics and Automation Letters, 3(2), 903–910. https://doi.org/10.1109/LRA.2018.2792688

    Article  Google Scholar 

  34. Hawkes, E. W., Jiang, H., & Cutkosky, M. R. (2015). Three-dimensional dynamic surface grasping with dry adhesion. The International Journal of Robotics Research, 35(8), 943–958. https://doi.org/10.1177/0278364915584645

    Article  Google Scholar 

  35. Day, P., Eason, E. V., Esparza, N., Christensen, D., & Cutkosky, M. (2013). Microwedge machining for the manufacture of directional dry adhesives. Journal of Micro and Nano-Manufacturing. https://doi.org/10.1115/1.4023161

    Article  Google Scholar 

  36. Tao, D., Gao, X., Lu, H., Liu, Z., Li, Y., Tong, H., et al. (2017). Controllable anisotropic dry adhesion in vacuum: Gecko inspired wedged surface fabricated with ultraprecision diamond cutting. Advanced Functional Materials, 27(22), 1606576. https://doi.org/10.1002/adfm.201606576

    Article  Google Scholar 

  37. Jiang, J., & Fu, Y.-F. (2020). A short survey of sustainable material extrusion additive manufacturing. Australian Journal of Mechanical Engineering. https://doi.org/10.1080/14484846.2020.1825045

    Article  Google Scholar 

  38. Jiang, J., & Ma, Y. (2020). Path planning strategies to optimize accuracy, quality, build time and material use in additive manufacturing: A review. Micromachines, 11(7), 633. https://doi.org/10.3390/mi11070633

    Article  Google Scholar 

  39. Dadkhah, M., Zhao, Z., Wettels, N., Spenko, M. (2016). A self-aligning gripper using an electrostatic/gecko-like adhesive. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS), Daejeon, South Korea (pp. 1006–1011). IEEE. https://doi.org/10.1109/IROS.2016.7759172

  40. Mattson, C. A., Howell, L. L., & Magleby, S. P. (2004). Development of commercially viable compliant mechanisms using the pseudo-rigid-body model: Case studies of parallel mechanisms. Journal of Intelligent Material Systems and Structures, 15(3), 195–202. https://doi.org/10.1177/1045389X04033256

    Article  Google Scholar 

  41. Hawkes, E. W., Christensen, D. L., Amy Kyungwon, H., Jiang, H., & Cutkosky, M. R. (2015). Grasping without squeezing: Shear adhesion gripper with fibrillar thin film. In 2015 IEEE international conference on robotics and automation (ICRA), Seattle, WA, USA (pp. 2305–2312). IEEE. https://doi.org/10.1109/ICRA.2015.7139505

  42. Howell, L. L. (2001). Compliant mechanisms. Wiley-Interscience.

    Google Scholar 

  43. DiBiasio, C. M., Culpepper, M. L., Panas, R., Howell, L. L., & Magleby, S. P. (2008). Comparison of molecular simulation and pseudo-rigid-body model predictions for a carbon nanotube–based compliant parallel-guiding mechanism. Journal of Mechanical Design. https://doi.org/10.1115/1.2885192

    Article  Google Scholar 

  44. Abtan, A. A., Richardson, R. C., & Thomas, B. (2016). Analyzing the 3D printed material Tango plus FLX930 for using in self-folding structure. In 2016 international conference for students on applied engineering (ICSAE), Newcastle Upon Tyne, UK (pp. 114–118). IEEE. https://doi.org/10.1109/ICSAE.2016.7810171

Download references

Acknowledgements

This work was supported by the Robotics Core Technology Development Project (20000512) funded by the Ministry of Trade, Industry and Energy (MoTIE, Korea), and the National Research Foundation of Korea (NRF) grant funded by the Korean Government (2020M1A3B8084924, 2019R1F1A1063066). The authors would like to thank Mr. kyungmin baek, an undergraduate researcher of the MOST Lab, for his contribution to robot arm manipulation.

Funding

This work was supported by the Robotics Core Technology Development Project (20000512) funded by the Ministry of Trade, Industry and Energy (MoTIE, Korea), and the National Research Foundation of Korea (NRF) grant funded by the Korean Government (2020M1A3B8084924, 2019R1F1A1063066).

Author information

Authors and Affiliations

Authors

Contributions

MG, YJP, SH, DK, and JK conceived the idea, discussed the results, and wrote the article. MG designed and fabricated the soft robot. MG, GP, and DH conducted the experiments and processed the results. All authors revised the manuscript.

Corresponding authors

Correspondence to Seungyong Han, Daeshik Kang or Je-sung Koh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 16508 KB)

Supplementary file2 (DOCX 204 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gwon, M., Park, G., Hong, D. et al. Soft Directional Adhesion Gripper Fabricated by 3D Printing Process for Gripping Flexible Printed Circuit Boards. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 1151–1163 (2022). https://doi.org/10.1007/s40684-021-00368-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00368-x

Keywords

Navigation