1932

Abstract

Animals operate in complex environments, and salient social information is encoded in the nervous system and then processed to initiate adaptive behavior. This encoding involves biological embedding, the process by which social experience affects the brain to influence future behavior. Biological embedding is an important conceptual framework for understanding social decision-making in the brain, as it encompasses multiple levels of organization that regulate how information is encoded and used to modify behavior. The framework we emphasize here is that social stimuli provoke short-term changes in neural activity that lead to changes in gene expression on longer timescales. This process, simplified—neurons are for today and genes are for tomorrow—enables the assessment of the valence of a social interaction, an appropriate and rapid response, and subsequent modification of neural circuitry to change future behavioral inclinations in anticipation of environmental changes. We review recent research on the neural and molecular basis of biological embedding in the context of social interactions, with a special focus on the honeybee.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-092820-012959
2021-07-08
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/neuro/44/1/annurev-neuro-092820-012959.html?itemId=/content/journals/10.1146/annurev-neuro-092820-012959&mimeType=html&fmt=ahah

Literature Cited

  1. Abraham E, Hendler T, Shapira-Lichter I, Kanat-Maymon Y, Zagoory-Sharon O, Feldman R 2014. Father's brain is sensitive to childcare experiences. PNAS 111:279792–97
    [Google Scholar]
  2. Alaux C, Robinson GE. 2007. Alarm pheromone induces immediate–early gene expression and slow behavioral response in honey bees. J. Chem. Ecol. 33:71346–50
    [Google Scholar]
  3. Alaux C, Sinha S, Hasadsri L, Hunt GJ, Guzmán-Novoa E et al. 2009. Honey bee aggression supports a link between gene regulation and behavioral evolution. PNAS 106:3615400–5
    [Google Scholar]
  4. Anderson DJ, Adolphs R. 2014. A framework for studying emotions across species. Cell 157:1187–200
    [Google Scholar]
  5. Aristizabal MJ, Anreiter I, Halldorsdottir T, Odgers CL, McDade TW et al. 2020. Biological embedding of experience: a primer on epigenetics. PNAS 117:23261–69
    [Google Scholar]
  6. Aso Y, Sitaraman D, Ichinose T, Kaun KR, Vogt K et al. 2014. Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. . eLife 3:e04580
    [Google Scholar]
  7. Avalos A, Fang M, Pan H, Ramirez Lluch A, Lipka AE et al. 2020. Genomic regions influencing aggressive behavior in honey bees are defined by colony allele frequencies. PNAS 117:17135–41
    [Google Scholar]
  8. Belgrad J, Fields RD. 2018. Epigenome interactions with patterned neuronal activity. Neuroscientist 24:5471–85
    [Google Scholar]
  9. Bell AM, Robinson GE. 2011. Behavior and the dynamic genome. Science 332:60341161–62
    [Google Scholar]
  10. Berens AE, Jensen SKG, Nelson CA. 2017. Biological embedding of childhood adversity: from physiological mechanisms to clinical implications. BMC Med 15:1135
    [Google Scholar]
  11. Beyeler A, Chang C-J, Silvestre M, Lévêque C, Namburi P et al. 2018. Organization of valence-encoding and projection-defined neurons in the basolateral amygdala. Cell Rep 22:4905–18
    [Google Scholar]
  12. Bierbach D, Laskowski KL, Wolf M. 2017. Behavioural individuality in clonal fish arises despite near-identical rearing conditions. Nat. Commun. 8:115361
    [Google Scholar]
  13. Boissy A, Manteuffel G, Jensen MB, Moe RO, Spruijt B et al. 2007. Assessment of positive emotions in animals to improve their welfare. Physiol. Behav. 92:3375–97
    [Google Scholar]
  14. Boyce W. 2019. The Orchid and the Dandelion: Why Some Children Struggle and How All Can Thrive New York: Knopff
  15. Boyce WT, Sokolowski MB, Robinson GE 2012. Toward a new biology of social adversity. PNAS 109:Suppl. 217143–48
    [Google Scholar]
  16. Breed MD, Guzmán-Novoa E, Hunt GJ. 2004. Defensive behavior of honey bees: organization, genetics, and comparisons with other bees. Annu. Rev. Entomol. 49:271–98
    [Google Scholar]
  17. Bukhari SA, Saul MC, James N, Bensky MK, Stein LR et al. 2019. Neurogenomic insights into paternal care and its relation to territorial aggression. Nat. Commun. 10:14437
    [Google Scholar]
  18. Burns JG, Svetec N, Rowe L, Mery F, Dolan MJ et al. 2012. Gene-environment interplay in Drosophila melanogaster: Chronic food deprivation in early life affects adult exploratory and fitness traits. PNAS 109:Suppl. 217239–44
    [Google Scholar]
  19. Campos FA, Fedigan LM. 2014. Spatial ecology of perceived predation risk and vigilance behavior in white-faced capuchins. Behav. Ecol. 25:3477–86
    [Google Scholar]
  20. Certel SSJ, Leung A, Lin C-Y, Perez P, Chiang A-S, Kravitz EA 2010. Octopamine neuromodulatory effects on a social behavior decision-making network in Drosophila males. PLOS ONE 5:10e13248
    [Google Scholar]
  21. Champagne FA. 2012. Interplay between social experiences and the genome: epigenetic consequences for behavior. Adv. Genet. 77:33–57
    [Google Scholar]
  22. Chandrasekaran S, Ament SA, Eddy JA, Rodriguez-Zas SL, Schatz BR et al. 2011. Behavior-specific changes in transcriptional modules lead to distinct and predictable neurogenomic states. PNAS 108:4418020–25
    [Google Scholar]
  23. Chandrasekaran S, Rittschof CC, Djukovic D, Gu H, Raftery D et al. 2015. Aggression is associated with aerobic glycolysis in the honey bee brain. Genes. Brain. Behav. 14:2158–66
    [Google Scholar]
  24. Chittka L, Niven J. 2009. Are bigger brains better?. Curr. Biol. 19:21R995–1008
    [Google Scholar]
  25. Cingolani P, Cao X, Khetani RS, Chen CC, Coon M et al. 2013. Intronic non-CG DNA hydroxymethylation and alternative mRNA splicing in honey bees. BMC Genom 14:1666
    [Google Scholar]
  26. Clayton DF. 2000. The genomic action potential. Neurobiol. Learn. Mem. 74:3185–216
    [Google Scholar]
  27. Clayton DF, Anreiter I, Aristizabal M, Frankland PW, Binder EB, Citri A 2020. The role of the genome in experience-dependent plasticity: extending the analogy of the genomic action potential. PNAS 117:3823252–60
    [Google Scholar]
  28. Close AF, Rouillard C, Buteau J. 2013. NR4A orphan nuclear receptors in glucose homeostasis: a minireview. Diabetes Metab 39:6478–84
    [Google Scholar]
  29. Cohen SM, Suutari B, He X, Wang Y, Sanchez S et al. 2018. Calmodulin shuttling mediates cytonuclear signaling to trigger experience-dependent transcription and memory. Nat. Commun. 9:12451
    [Google Scholar]
  30. Dias BG, Ressler KJ. 2014. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 17:189–96
    [Google Scholar]
  31. Dolmetsch R. 2003. Excitation-transcription coupling: signaling by ion channels to the nucleus. Sci. Signal. 2003.166pe4
    [Google Scholar]
  32. Dominguez JM, Hull EM. 2005. Dopamine, the medial preoptic area, and male sexual behavior. Physiol. Behav. 86:3356–68
    [Google Scholar]
  33. Downs SG, Ratnieks FLW. 2000. Adaptive shifts in honey bee (Apis mellifera L.) guarding behavior support predictions of the acceptance threshold model. Behav. Ecol. 11:3326–33
    [Google Scholar]
  34. Dulac C, O'Connell LA, Wu Z 2014. Neural control of maternal and paternal behaviors. Science 345:6198765–70
    [Google Scholar]
  35. Elsik CG, Worley KC, Bennett AK, Beye M, Camara F et al. 2014. Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genom 15:186
    [Google Scholar]
  36. Fahrbach SE. 2006. Structure of the mushroom bodies of the insect brain. Annu. Rev. Entomol. 51:209–32
    [Google Scholar]
  37. Farris SM. 2011. Are mushroom bodies cerebellum-like structures?. Arthropod Struct. Dev. 40:4368–79
    [Google Scholar]
  38. Farris SM, Robinson GE, Davis RL, Fahrbach SE. 1999. Larval and pupal development of the mushroom bodies in the honey bee, Apis mellifera. . J. Comp. Neurol. 414:197–113
    [Google Scholar]
  39. Fischer EK, O'Connell LA 2020. Hormonal and neural correlates of care in active versus observing poison frog parents. Horm. Behav. 120:104696
    [Google Scholar]
  40. Fischer EK, Roland AB, Moskowitz NA, Vidoudez C, Ranaivorazo N et al. 2019. Mechanisms of convergent egg provisioning in poison frogs. Curr. Biol. 29:234145–51.e3
    [Google Scholar]
  41. Fujita N, Nagata Y, Nishiuchi T, Sato M, Iwami M, Kiya T. 2013. Visualization of neural activity in insect brains using a conserved immediate early gene, Hr38. . Curr. Biol. 23:202063–70
    [Google Scholar]
  42. Gehring KB, Heufelder K, Feige J, Bauer P, Dyck Y et al. 2016. Involvement of phosphorylated Apis mellifera CREB in gating a honeybee's behavioral response to an external stimulus. Learn. Mem. 23:5195–207
    [Google Scholar]
  43. Getty T. 1996. The maintenance of phenotypic plasticity as a signal detection problem. Am. Nat. 148:2378–85
    [Google Scholar]
  44. Gordon I, Zagoory-Sharon O, Leckman JF, Feldman R. 2010. Oxytocin and the development of parenting in humans. Biol. Psychiatry 68:4377–82
    [Google Scholar]
  45. Grunwald Kadow IC 2019. State-dependent plasticity of innate behavior in fruit flies. Curr. Opin. Neurobiol. 54:60–65
    [Google Scholar]
  46. Guillermin ML, Carrillo MA, Hallem EA. 2017. A single set of interneurons drives opposite behaviors in C. elegans. . Curr. Biol. 27:172630–39.e6
    [Google Scholar]
  47. Hall ZJ, Meddle SL, Healy SD. 2015. From neurons to nests: nest-building behaviour as a model in behavioural and comparative neuroscience. J. Ornithol. 156:1133–43
    [Google Scholar]
  48. Hamilton AR, Traniello IM, Ray AM, Caldwell AS, Wickline SA, Robinson GE. 2019. Division of labor in honey bees is associated with transcriptional regulatory plasticity in the brain. J. Exp. Biol. 222:Pt. 14jeb200196
    [Google Scholar]
  49. Hasegawa S, Furuichi T, Yoshida T, Endoh K, Kato K et al. 2009. Transgenic up-regulation of alpha-CaMKII in forebrain leads to increased anxiety-like behaviors and aggression. Mol. Brain. 2:16
    [Google Scholar]
  50. He XJ, Zhang XC, Jiang WJ, Barron AB, Zhang JH, Zeng ZJ. 2016. Starving honey bee (Apis mellifera) larvae signal pheromonally to worker bees. Sci. Rep. 6:122359
    [Google Scholar]
  51. Heimken C, Aumeier P, Kirchner WH. 2009. Mechanisms of food provisioning of honeybee larvae by worker bees. J. Exp. Biol. 212:71032–35
    [Google Scholar]
  52. Herb BR, Shook MS, Fields CJ, Robinson GE. 2018. Defense against territorial intrusion is associated with DNA methylation changes in the honey bee brain. BMC Genom 19:1216
    [Google Scholar]
  53. Hernandez PJ, Abel T. 2008. The role of protein synthesis in memory consolidation: progress amid decades of debate. Neurobiol. Learn. Mem. 89:3293–311
    [Google Scholar]
  54. Hertzman C. 1999. The biological embedding of early experience and its effects on health in adulthood. Ann. N. Y. Acad. Sci. 896:185–95
    [Google Scholar]
  55. Hertzman C. 2012. Putting the concept of biological embedding in historical perspective. PNAS 109:Suppl. 217160–67
    [Google Scholar]
  56. Hertzman C, Wiens M. 1996. Child development and long-term outcomes: a population health perspective and summary of successful interventions. Soc. Sci. Med. 43:71083–95
    [Google Scholar]
  57. Hou L, Li B, Ding D, Kang L, Wang X. 2019. CREB-B acts as a key mediator of NPF/NO pathway involved in phase-related locomotor plasticity in locusts. PLOS Genet 15:5e1008176
    [Google Scholar]
  58. Hsu Y, Earley RL, Wolf LL. 2005. Modulation of aggressive behaviour by fighting experience: mechanisms and contest outcomes. Biol. Rev. 81:0133–74
    [Google Scholar]
  59. Huang Z-Y, Robinson GE. 1996. Regulation of honey bee division of labor by colony age demography. Behav. Ecol. Sociobiol. 39:3147–58
    [Google Scholar]
  60. Insel TR, Fernald RD. 2004. How the brain processes social information: searching for the social brain. Annu. Rev. Neurosci. 27:697–722
    [Google Scholar]
  61. Johnson BR. 2010. Division of labor in honeybees: form, function, and proximate mechanisms. Behav. Ecol. Sociobiol. 64:3305–16
    [Google Scholar]
  62. Joiner MLA, Griffith LC. 1997. CaM kinase II and visual input modulate memory formation in the neuronal circuit controlling courtship conditioning. J. Neurosci. 17:239384–91
    [Google Scholar]
  63. Jung Y, Kennedy A, Chiu H, Mohammad F, Claridge-Chang A, Anderson DJ. 2020. Neurons that function within an integrator to promote a persistent behavioral state in Drosophila. . Neuron 105:2322–33.e5
    [Google Scholar]
  64. Kabelik D, Weitekamp CA, Choudhury SC, Hartline JT, Smith AN, Hofmann HA. 2018. Neural activity in the social decision-making network of the brown anole during reproductive and agonistic encounters. Horm. Behav. 106:178–88
    [Google Scholar]
  65. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ 2012. Principles of Neural Science New York: McGraw-Hill, 5th ed..
  66. Kao MH, Wright BD, Doupe AJ. 2008. Neurons in a forebrain nucleus required for vocal plasticity rapidly switch between precise firing and variable bursting depending on social context. J. Neurosci. 28:4913232–47
    [Google Scholar]
  67. Kent M, Bell AM. 2018. Changes in behavior and brain immediate early gene expression in male threespined sticklebacks as they become fathers. Horm. Behav. 97:102–11
    [Google Scholar]
  68. Koganezawa M, Kimura K, Yamamoto D. 2016. The neural circuitry that functions as a switch for courtship versus aggression in Drosophila males. Curr. Biol. 26:111395–403
    [Google Scholar]
  69. Kuroda KO, Tachikawa K, Yoshida S, Tsuneoka Y, Numan M. 2011. Neuromolecular basis of parental behavior in laboratory mice and rats: with special emphasis on technical issues of using mouse genetics. Prog. Neuropsychopharmacol. Biol. Psychiatry 35:51205–31
    [Google Scholar]
  70. Lam LL, Emberly E, Fraser HB, Neumann SM, Chen E et al. 2012. Factors underlying variable DNA methylation in a human community cohort. PNAS 109:Suppl. 217253–60
    [Google Scholar]
  71. Le Conte Y, Sreng L, Trouiller J 1994. The recognition of larvae by worker honeybees. Naturwissenschaften 81:10462–65
    [Google Scholar]
  72. Leslie JH, Nedivi E. 2011. Activity-regulated genes as mediators of neural circuit plasticity. Prog. Neurobiol. 94:3223–37
    [Google Scholar]
  73. Li-Byarlay H, Rittschof CC, Massey JH, Pittendrigh BR, Robinson GE 2014. Socially responsive effects of brain oxidative metabolism on aggression. PNAS 111:3412533–37
    [Google Scholar]
  74. Liebeskind BJ, Hillis DM, Zakon HH, Hofmann HA. 2016. Complex homology and the evolution of nervous systems. Trends Ecol. Evol. 31:2127–35
    [Google Scholar]
  75. Liebeskind BJ, Hofmann HA, Hillis DM, Zakon HH. 2017. Evolution of animal neural systems. Annu. Rev. Ecol. Evol. Syst. 48:377–98
    [Google Scholar]
  76. Lisman J, Schulman H, Cline H. 2002. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 3:3175–90
    [Google Scholar]
  77. Ma H, Groth RD, Cohen SM, Emery JF, Li B et al. 2014. γCaMKII shuttles Ca2+/CaM to the nucleus to trigger CREB phosphorylation and gene expression. Cell 159:2281–94
    [Google Scholar]
  78. Monestier C, Bell AM. 2020. Personality traits change after an opportunity to mate. Proc. R. Soc. B Biol. Sci. 287: 1926.20192936
    [Google Scholar]
  79. Morgan JI, Curran T. 1989. Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci 12:11459–62
    [Google Scholar]
  80. Mukherjee D, Ignatowska-Jankowska BM, Itskovits E, Gonzales BJ, Turm H et al. 2018. Salient experiences are represented by unique transcriptional signatures in the mouse brain. eLife 7:e31220
    [Google Scholar]
  81. Naeger NL, Robinson GE. 2016. Transcriptomic analysis of instinctive and learned reward-related behaviors in honey bees. J. Exp. Biol. 219:223554–61
    [Google Scholar]
  82. Namburi P, Al-Hasani R, Calhoon GG, Bruchas MR, Tye KM. 2016. Architectural representation of valence in the limbic system. Neuropsychopharmacology 41:71697–715
    [Google Scholar]
  83. Niven JE, Farris SM. 2012. Miniaturization of nervous systems and neurons. Curr. Biol. 22:R323–29
    [Google Scholar]
  84. O'Connell LA, Hofmann HA. 2011. The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J. Comp. Neurol. 519:183599–639
    [Google Scholar]
  85. O'Connell LA, Hofmann HA. 2012. Evolution of a vertebrate social decision-making network. Science 336:60851154–57
    [Google Scholar]
  86. Okuyama T, Yokoi S, Abe H, Isoe Y, Suehiro Y et al. 2014. A neural mechanism underlying mating preferences for familiar individuals in medaka fish. Science 343:616691–94
    [Google Scholar]
  87. Perisse E, Yin Y, Lin AC, Lin S, Huetteroth W, Waddell S. 2013. Different Kenyon cell populations drive learned approach and avoidance in Drosophila. . Neuron 79:5945–56
    [Google Scholar]
  88. Pitchers WR, Constantinou SJ, Losilla M, Gallant JR. 2016. Electric fish genomics: progress, prospects, and new tools for neuroethology. J. Physiol. Paris 110:3259–72
    [Google Scholar]
  89. Preston SR, Palmer JH, Harrison JW, Carr HM, Rittschof CC. 2019. The impacts of maternal stress on worker phenotypes in the honey bee. Apidologie 50:5704–19
    [Google Scholar]
  90. Rasia-Filho AA, Cohen RS, von Bohlen und Halbach O. 2016. Editorial: Frontiers in synaptic plasticity: dendritic spines, circuitries and behavior. Front. Psychiatry 7:112
    [Google Scholar]
  91. Rittschof CC, Bukhari SA, Sloofman LG, Troy JM, Caetano-Anollés D et al. 2014. Neuromolecular responses to social challenge: common mechanisms across mouse, stickleback fish, and honey bee. PNAS 111:5017929–34
    [Google Scholar]
  92. Rittschof CC, Coombs CB, Frazier M, Grozinger CM, Robinson GE. 2015. Early-life experience affects honey bee aggression and resilience to immune challenge. Sci. Rep. 5:15572
    [Google Scholar]
  93. Rittschof CC, Robinson GE. 2016. Behavioral genetic toolkits: toward the evolutionary origins of complex phenotypes. Curr. Top. Dev. Biol. 119:157–204
    [Google Scholar]
  94. Robinson GE. 1992. Regulation of division of labor in insect societies. Annu. Rev. Entomol. 37:637–65
    [Google Scholar]
  95. Robinson GE. 2015. Brains work via their genes just as much as their neurons. The Conversation Oct. 14. https://theconversation.com/brains-work-via-their-genes-just-as-much-as-their-neurons-47522
    [Google Scholar]
  96. Robinson GE, Barron AB. 2017. Epigenetics and the evolution of instincts. Science 356:633326–27
    [Google Scholar]
  97. Roleira A, Oliveira GA, Lopes JS, Oliveira RF. 2017. Audience effects in territorial defense of male cichlid fish are associated with differential patterns of activation of the brain social decision-making network. Front. Behav. Neurosci. 11:105
    [Google Scholar]
  98. Rubenstein DR, Alcock J. 2018. Animal Behavior Oxford, UK: Oxford Univ. Press, 11th ed..
  99. Sagili RR, Metz BN, Lucas HM, Chakrabarti P, Breece CR. 2018. Honey bees consider larval nutritional status rather than genetic relatedness when selecting larvae for emergency queen rearing. Sci. Rep. 8:17679
    [Google Scholar]
  100. Saul MC, Blatti C, Yang W, Bukhari SA, Shpigler HY et al. 2018. Cross-species systems analysis of evolutionary toolkits of neurogenomic response to social challenge. Genes Brain Behav 18:1e12502
    [Google Scholar]
  101. Saul MC, Seward CH, Troy JM, Zhao H, Sloofman LG et al. 2017. Transcriptional regulatory dynamics drive coordinated metabolic and neural response to social challenge in mice. Genome Res 27:6959–72
    [Google Scholar]
  102. Savic D, Distler MG, Sokoloff G, Shanahan NA, Dulawa SC et al. 2011. Modulation of Tcf7l2 expression alters behavior in mice. PLOS ONE 6:10e26897
    [Google Scholar]
  103. Schneider JS, Stone MK, Wynne-Edwards KE, Horton TH, Lydon J et al. 2003. Progesterone receptors mediate male aggression toward infants. PNAS 100:52951–56
    [Google Scholar]
  104. Schuett W, Dall SRX, Baeumer J, Kloesener MH, Nakagawa S et al. 2011. Personality variation in a clonal insect: the pea aphid, Acyrthosiphon pisum. . Dev. Psychobiol. 53:6631–40
    [Google Scholar]
  105. Schulz DJ, Huang Z-YY, Robinson GE. 1998. Effects of colony food shortage on behavioral development in honey bees. Behav. Ecol. Sociobiol. 42:5295–303
    [Google Scholar]
  106. Scott N, Prigge M, Yizhar O, Kimchi T. 2015. A sexually dimorphic hypothalamic circuit controls maternal care and oxytocin secretion. Nature 525:7570519–22
    [Google Scholar]
  107. Sen Sarma M, Rodriguez-Zas SL, Hong F, Zhong S, Robinson GE 2009. Transcriptomic profiling of central nervous system regions in three species of honey bee during dance communication behavior. PLOS ONE 4:7e6408
    [Google Scholar]
  108. Sharova LV, Sharov AA, Nedorezov T, Piao Y, Shaik N, Ko MSH. 2009. Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res 16:145–58
    [Google Scholar]
  109. Sheng M, McFadden G, Greenberg ME. 1990. Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4:4571–82
    [Google Scholar]
  110. Shpigler HY, Robinson GE. 2015. Laboratory assay of brood care for quantitative analyses of individual differences in honey bee (Apis mellifera) affiliative behavior. PLOS ONE 10:11e0143183
    [Google Scholar]
  111. Shpigler HY, Saul MC, Murdoch EE, Cash-Ahmed AC, Seward CH et al. 2017. Behavioral, transcriptomic and epigenetic responses to social challenge in honey bees. Genes Brain Behav 16:6579–91
    [Google Scholar]
  112. Shpigler HY, Saul MC, Murdoch EE, Corona F, Cash-Ahmed AC et al. 2018. Honey bee neurogenomic responses to affiliative and agonistic social interactions. Genes Brain Behav 18:1e12509
    [Google Scholar]
  113. Shubin N, Tabin C, Carroll S. 2009. Deep homology and the origins of evolutionary novelty. Nature 457:7231818–23
    [Google Scholar]
  114. Sih A, Bell A, Johnson JC. 2004. Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol. Evol. 19:7372–78
    [Google Scholar]
  115. Sih A, Ferrari MCO, Harris DJ. 2011. Evolution and behavioural responses to human-induced rapid environmental change. Evol. Appl. 4:2367–87
    [Google Scholar]
  116. Singh TD, Nordeen EJ, Nordeen KW. 2005. Song tutoring triggers CaMKII phosphorylation within a specialized portion of the avian basal ganglia. J. Neurobiol. 65:2179–91
    [Google Scholar]
  117. Sinha S, Jones BM, Traniello IM, Bukhari SA, Halfon MS et al. 2020. Behavior-related gene regulatory networks: a new level of organization in the brain. PNAS 117:3823270–79
    [Google Scholar]
  118. Spiegel I, Mardinly AR, Gabel HW, Bazinet JE, Couch CH et al. 2014. Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs. Cell 157:51216–29
    [Google Scholar]
  119. Stevenson PA, Schildberger K. 2013. Mechanisms of experience dependent control of aggression in crickets. Curr. Opin. Neurobiol. 23:3318–23
    [Google Scholar]
  120. Strausfeld NJ. 2002. Organization of the honey bee mushroom body: representation of the calyx within the vertical and gamma lobes. J. Comp. Neurol. 450:14–33
    [Google Scholar]
  121. Strausfeld NJ, Hirth F. 2013. Deep homology of arthropod central complex and vertebrate basal ganglia. Science 340:6129157–61
    [Google Scholar]
  122. Tomer R, Denes AS, Tessmar-Raible K, Arendt D. 2010. Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell 142:5800–9
    [Google Scholar]
  123. Toth AL, Robinson GE. 2007. Evo-devo and the evolution of social behavior. Trends Genet 23:334–41
    [Google Scholar]
  124. Traniello IM, Chen Z, Bagchi VA, Robinson GE. 2019. Valence of social information is encoded in different subpopulations of mushroom body Kenyon cells in the honeybee brain. Proc. R. Soc. B Biol. Sci. 286: 1910.20190901
    [Google Scholar]
  125. Tye KM. 2018. Neural circuit motifs in valence processing. Neuron 100:2436–52
    [Google Scholar]
  126. Wallberg A, Bunikis I, Pettersson OV, Mosbech M-B, Childers AK et al. 2019. A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds. BMC Genom 20:1275
    [Google Scholar]
  127. Wang H, Xu J, Lazarovici P, Quirion R, Zheng W. 2018. cAMP response element-binding protein (CREB): a possible signaling molecule link in the pathophysiology of schizophrenia. Front. Mol. Neurosci. 11:255
    [Google Scholar]
  128. Weaver ICG, Cervoni N, Champagne FA, D'Alessio AC, Sharma S et al. 2004. Epigenetic programming by maternal behavior. Nat. Neurosci. 7:8847–54
    [Google Scholar]
  129. Weinstock GM, Robinson GE, Gibbs RA, Worley KC, Evans JD et al. 2006. Insights into social insects from the genome of the honeybee Apis mellifera. . Nature 443:7114931–49
    [Google Scholar]
  130. Weitekamp CA, Hofmann HA. 2017. Neuromolecular correlates of cooperation and conflict during territory defense in a cichlid fish. Horm. Behav. 89:145–56
    [Google Scholar]
  131. Whitfield CW, Cziko AM, Robinson GE. 2003. Gene expression profiles in the brain predict behavior in individual honey bees. Science 302:5643296–99
    [Google Scholar]
  132. Wilson EO, Hölldobbler B. 2009. The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies New York: WW Norton & Company
  133. Winston ML. 1991. The Biology of the Honey Bee Cambridge, MA: Harvard Univ. Press
  134. Woolley SC. 2016. Social context differentially modulates activity of two interneuron populations in an avian basal ganglia nucleus. J. Neurophysiol. 116:62831–40
    [Google Scholar]
  135. Wu Z, Autry AE, Bergan JF, Watabe-Uchida M, Dulac CG. 2014. Galanin neurons in the medial preoptic area govern parental behaviour. Nature 509:7500325–30
    [Google Scholar]
  136. Yang E-J, Phelps SM, Crews D, Wilczynski W. 2001. The effects of social experience on aggressive behavior in the green anole lizard (Anolis carolinensis). Ethology 107:9777–93
    [Google Scholar]
  137. Yap E-L, Greenberg ME. 2018. Activity-regulated transcription: bridging the gap between neural activity and behavior. Neuron 100:2330–48
    [Google Scholar]
  138. Yehuda R, Cai G, Golier JA, Sarapas C, Galea S et al. 2009. Gene expression patterns associated with posttraumatic stress disorder following exposure to the World Trade Center attacks. Biol. Psychiatry 66:7708–11
    [Google Scholar]
  139. Young RL, Ferkin MH, Ockendon-Powell NF, Orr VN, Phelps SM et al. 2019. Conserved transcriptomic profiles underpin monogamy across vertebrates. PNAS 116:41331–36
    [Google Scholar]
  140. Zayed A, Robinson GE. 2012. Understanding the relationship between brain gene expression and social behavior: lessons from the honey bee. Annu. Rev. Genet. 46:591–615
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-092820-012959
Loading
/content/journals/10.1146/annurev-neuro-092820-012959
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error