Skip to main content

Advertisement

Log in

3D-Encoded DENSE MRI with Zonal Excitation for Quantifying Biventricular Myocardial Strain During a Breath-Hold

  • CFM Lab 40
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Right ventricular (RV) function is increasingly recognized for its prognostic value in many disease states. As with the left ventricle (LV), strain-based measurements may have better prognostic value than typical chamber volumes or ejection fraction. Complete functional characterization of the RV requires high-resolution, 3D displacement tracking methods, which have been prohibitively challenging to implement. Zonal excitation during Displacement ENcoding with Stimulated Echoes (DENSE) magnetic resonance imaging (MRI) has helped reduce scan time for 2D LV strain quantification. We hypothesized that zonal excitation could alternatively be used to reproducibly acquire higher resolution, 3D-encoded DENSE images for quantification of bi-ventricular strain within a single breath-hold.

Methods

We modified sequence parameters for a 3D zonal excitation DENSE sequence to achieve in-plane resolution < 2 mm and acquired two sets of images in eight healthy adult male volunteers with median (IQR) age 32.5 (32.0–33.8) years. We assessed the inter-test reproducibility of this technique, and compared computed strains and torsion with previously published data.

Results

Data for one subject was excluded based on image artifacts. Reproducibility for LV (CoV: 6.1–9.0%) and RV normal strains (CoV: 6.3–8.2%) and LV torsion (CoV = 7.1%) were all very good. Reproducibility of RV torsion was lower (CoV = 16.7%), but still within acceptable limits. Computed global strains and torsion were within reasonable agreement with published data, but further studies in larger cohorts are needed to confirm.

Conclusion

Reproducible acquisition of 3D-encoded biventricular myocardial strain data in a breath-hold is feasible using DENSE with zonal excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

RV:

Right ventricle

LV:

Left ventricle

DENSE:

Displacement ENcoding with Stimulated Echoes

MRI:

Magnetic resonance imaging

CoV:

Coefficient of variation

SENC:

Strain encoded

ARVC:

Arrhythmogenic right ventricular cardiomyopathy

ZE:

Zonal excitation

RF:

Radiofrequency

FOV:

Field of view

TR:

Repetition time

TE:

Echo time

SNR:

Signal to noise ratio

IQR:

Inter-quartile range

SD:

Standard deviation

E RR, E CC, E LL :

Radial, circumferential, longitudinal normal strain, respectively

References

  1. Abdishektaei M, Feng X, Meyer CH, Epstein FH (2019) DAS-Net: A generative adversarial net to suppress artifact-generating echoes in DENSE MRI. In: Proceedings of the International Society for Magnetic Resonance in Medicine. p 1089

  2. Amundsen, B. H., T. Helle-Valle, T. Edvardsen, et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography: Validation against sonomicrometry and tagged magnetic resonance imaging. J. Am. Coll. Cardiol. 47:789–793, 2006. https://doi.org/10.1016/j.jacc.2005.10.040.

    Article  PubMed  Google Scholar 

  3. Amzulescu, M. S., M. De Craene, H. Langet, et al. Myocardial strain imaging: Review of general principles, validation, and sources of discrepancies. Eur. Heart J. Cardiovasc. Imaging 20:605–619, 2019. https://doi.org/10.1093/ehjci/jez041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Auger, D. A., X. Zhong, F. H. Epstein, and B. S. Spottiswoode. Mapping right ventricular myocardial mechanics using 3D cine DENSE cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 14:4, 2012. https://doi.org/10.1186/1532-429X-14-4.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Benjamini, Y., and Y. Hochberg. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57:289–300, 1995.

    Google Scholar 

  6. Bland, J. M., and D. Altman. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 47:931–936, 1986. https://doi.org/10.1016/j.ijnurstu.2009.10.001.

    Article  Google Scholar 

  7. Cameli, M., M. Lisi, F. M. Righini, et al. Right ventricular longitudinal strain correlates well with right ventricular stroke work index in patients with advanced heart failure referred for heart transplantation. J. Card. Fail. 18:208–215, 2012. https://doi.org/10.1016/j.cardfail.2011.12.002.

    Article  PubMed  Google Scholar 

  8. Cao, J. J., N. Ngai, L. Duncanson, et al. A comparison of both DENSE and feature tracking techniques with tagging for the cardiovascular magnetic resonance assessment of myocardial strain. J. Cardiovasc. Magn. Reson. 2018. https://doi.org/10.1186/s12968-018-0448-9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Carruth, E. D., W. Young, D. Beer, et al. Prevalence and electronic health record-based phenotype of loss-of-function genetic variants in arrhythmogenic right ventricular cardiomyopathy-associated genes. Circ. Genomic Precis Med. 12:487–494, 2019. https://doi.org/10.1161/CIRCGEN.119.002579.

    Article  Google Scholar 

  10. Chen, X., Y. Yang, X. Cai, et al. Accelerated two-dimensional cine DENSE cardiovascular magnetic resonance using compressed sensing and parallel imaging. J. Cardiovasc. Magn. Reson. 18:38, 2016. https://doi.org/10.1186/s12968-016-0253-2.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Claus, P., A. M. S. Omar, G. Pedrizzetti, et al. Tissue tracking technology for assessing cardiac mechanicsprinciples, normal values, and clinical applications. JACC Cardiovasc. Imaging 8:1444–1460, 2015. https://doi.org/10.1016/j.jcmg.2015.11.001.

    Article  PubMed  Google Scholar 

  12. D’Hooge, J., A. Heimdal, F. Jamal, et al. Regional strain and strain rate measurements by cardiac ultrasound: Principles, implementation and limitations. Eur. J. Echocardiogr. 1:154–170, 2000. https://doi.org/10.1053/euje.2000.0031.

    Article  PubMed  Google Scholar 

  13. Fielden SW, Carruth ED, Nevius CD, et al (2020) Deep learning for undersampled spiral DENSE reconstruction. In: Proceedings of the International Society for Magnetic Resonance in Medicine. p 3618

  14. Fu, Q., B. Xu, Y. Liu, et al. Insulin inhibits cardiac contractility by inducing a Gi-biased β2-adrenergic signaling in hearts. Diabetes 63:2676–2689, 2014. https://doi.org/10.2337/db13-1763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gilliam A.D., Suever J. D. DENSE analysis. 2016. https://github.com/denseanalysis/denseanalysis.

  16. Haddad, F., R. Doyle, D. J. Murphy, and S. A. Hunt. Right ventricular function in cardiovascular disease, part II: Pathophysiology, clinical importance, and management of right ventricular failure. Circulation 117:1717–1731, 2008. https://doi.org/10.1161/CIRCULATIONAHA.107.653584.

    Article  PubMed  Google Scholar 

  17. Haggerty, C. M., S. P. Kramer, C. M. Binkley, et al. Reproducibility of cine displacement encoding with stimulated echoes (DENSE) cardiovascular magnetic resonance for measuring left ventricular strains, torsion, and synchrony in mice. J. Cardiovasc. Magn. Reson. 15:71, 2013. https://doi.org/10.1186/1532-429X-15-71.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Haggerty, C. M., J. D. Suever, A. Pulenthiran, et al. Association between left ventricular mechanics and diffuse myocardial fibrosis in patients with repaired Tetralogy of Fallot: A cross-sectional study. J. Cardiovasc. Magn. Reson. 19:100, 2017. https://doi.org/10.1186/s12968-017-0410-2.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hamada-Harimura, Y., Y. Seo, T. Ishizu, et al. Incremental prognostic value of right ventricular strain in patients with acute decompensated heart failure. Circ. Cardiovasc. Imaging 11:2018. https://doi.org/10.1161/CIRCIMAGING.117.007249.

    Article  PubMed  Google Scholar 

  20. Hamdan, A., T. Thouet, K. Sebastian, et al. Regional right ventricular function and timing of contraction in healthy volunteers evaluated by strain-encoded MRI. J. Magn. Reson. Imaging 28:1379–1385, 2008. https://doi.org/10.1002/jmri.21526.

    Article  PubMed  Google Scholar 

  21. Heermann, P., D. M. Hedderich, M. Paul, et al. Biventricular myocardial strain analysis in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) using cardiovascular magnetic resonance feature tracking. J. Cardiovasc. Magn. Reson. 16:75, 2014. https://doi.org/10.1186/s12968-014-0075-z.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hor, K. N., W. M. Gottliebson, C. Carson, et al. Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis. JACC Cardiovasc. Imaging 3:144–151, 2010. https://doi.org/10.1016/j.jcmg.2009.11.006.

    Article  PubMed  Google Scholar 

  23. Jing, L., C. M. Haggerty, J. D. Suever, et al. Patients with repaired tetralogy of Fallot suffer from intra- and inter-ventricular cardiac dyssynchrony: A cardiac magnetic resonance study. Eur. Heart J. Cardiovasc. Imaging 15:1333–1343, 2014. https://doi.org/10.1093/ehjci/jeu123.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jing, L., G. J. Wehner, J. D. Suever, et al. Left and right ventricular dyssynchrony and strains from cardiovascular magnetic resonance feature tracking do not predict deterioration of ventricular function in patients with repaired tetralogy of Fallot. J. Cardiovasc. Magn. Reson. 18:49, 2016. https://doi.org/10.1186/s12968-016-0268-8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kar, J., A. K. Knutsen, B. P. Cupps, et al. Three-dimensional regional strain computation method with displacement encoding with stimulated echoes (DENSE) in non-ischemic, non-valvular dilated cardiomyopathy patients and healthy subjects validated by tagged MRI. J. Magn. Reson. Imaging 00:1–11, 2014. https://doi.org/10.1002/jmri.24576.

    Article  Google Scholar 

  26. Kovács, A., B. Lakatos, M. Tokodi, and B. Merkely. Right ventricular mechanical pattern in health and disease: beyond longitudinal shortening. Heart Fail. Rev. 24(4):511–520, 2019.

    Article  Google Scholar 

  27. Matsukubo, H., T. Matsuura, N. Endo, et al. Echocardiographic measurement of right ventricular wall thickness. A new application of subxiphoid echocardiography. Circulation 56:278–284, 1977. https://doi.org/10.1161/01.CIR.56.2.278.

    Article  CAS  PubMed  Google Scholar 

  28. Moore, C. C., C. H. Lugo-Olivieri, E. R. McVeigh, and E. A. Zerhouni. Three-dimensional systolic strain patterns in the normal human left ventricle: Characterization with tagged MR imaging. Radiology 214:453–466, 2000. https://doi.org/10.1148/radiology.214.2.r00fe17453.

    Article  CAS  PubMed  Google Scholar 

  29. Nagao, M., Y. Yamasaki, M. Yonezawa, et al. Interventricular dyssynchrony using tagging magnetic resonance imaging predicts right ventricular dysfunction in adult congenital heart disease. Congenit. Heart Dis. 10:271–280, 2015. https://doi.org/10.1111/chd.12217.

    Article  PubMed  Google Scholar 

  30. Pan, L., M. Stuber, D. L. Kraitchman, et al. Real-time imaging of regional myocardial function using fast-SENC. Magn. Reson. Med. 55:386–395, 2006. https://doi.org/10.1002/mrm.20770.

    Article  PubMed  Google Scholar 

  31. Scatteia, A., A. Baritussio, and C. Bucciarelli-Ducci. Strain imaging using cardiac magnetic resonance. Heart Fail. Rev. 10:2, 2017. https://doi.org/10.1007/s10741-017-9621-8.

    Article  Google Scholar 

  32. Schlemper, J., J. Caballero, J. V. Hajnal, et al. A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37:491–503, 2018. https://doi.org/10.1109/TMI.2017.2760978.

    Article  PubMed  Google Scholar 

  33. Scott, A. D., U. Tayal, S. Nielles-Vallespin, et al. Accelerating cine DENSE using a zonal excitation. J. Cardiovasc. Magn. Reson. 2016. https://doi.org/10.1186/1532-429x-18-s1-o50.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Smith, B. C. F., G. Dobson, D. Dawson, et al. Three-dimensional speckle tracking of the right ventricle: Toward optimal quantification of right ventricular dysfunction in pulmonary hypertension. J. Am. Coll. Cardiol. 64:41–51, 2014. https://doi.org/10.1016/j.jacc.2014.01.084.

    Article  PubMed  Google Scholar 

  35. Spottiswoode, B. S., X. Zhong, A. T. Hess, et al. Tracking myocardial motion from cine DENSE images using spatiotemporal phase unwrapping and temporal fitting. IEEE Trans. Med. Imaging 26:15–30, 2007. https://doi.org/10.1109/TMI.2006.884215.

    Article  CAS  PubMed  Google Scholar 

  36. Stanton, T., R. Leano, and T. H. Marwick. Prediction of all-cause mortality from global longitudinal speckle strain: Comparison with ejection fraction and wall motion scoring. Circ. Cardiovasc. Imaging 2:356–364, 2009. https://doi.org/10.1161/CIRCIMAGING.109.862334.

    Article  PubMed  Google Scholar 

  37. Stuber, M., M. A. Spiegel, S. E. Fischer, et al. Single breath-hold slice-following CSPAMM myocardial tagging. MAGMA 9:85–91, 1999.

    Article  CAS  Google Scholar 

  38. Suever, J. D., G. J. Wehner, L. Jing, et al. Right ventricular strain, torsion, and dyssynchrony in healthy subjects using 3D spiral cine DENSE magnetic resonance imaging. IEEE Trans. Med. Imaging 36:1076–1085, 2017. https://doi.org/10.1109/TMI.2016.2646321.

    Article  PubMed  Google Scholar 

  39. Tayal, U., R. Wage, P. F. Ferreira, et al. The feasibility of a novel limited field of view spiral cine DENSE sequence to assess myocardial strain in dilated cardiomyopathy. Magn. Reson. Mater. Phys. Biol. Med. 32:317–329, 2019. https://doi.org/10.1007/s10334-019-00735-5.

    Article  Google Scholar 

  40. Taylor, A. J., M. Salerno, R. Dharmakumar, and M. Jerosch-Herold. T1 mapping basic techniques and clinical applications. JACC Cardiovasc. Imaging 9:67–81, 2016.

    Article  Google Scholar 

  41. Tello, K., A. Dalmer, R. Vanderpool, et al. Cardiac magnetic resonance imaging-based right ventricular strain analysis for assessment of coupling and diastolic function in pulmonary hypertension. JACC Cardiovasc. Imaging 2019. https://doi.org/10.1016/j.jcmg.2018.12.032.

    Article  PubMed  Google Scholar 

  42. Vigneault, D. M., A. S. J. M. te Riele, C. A. James, et al. Right ventricular strain by MR quantitatively identifies regional dysfunction in patients with arrhythmogenic right ventricular cardiomyopathy. J. Magn. Reson. Imaging 43:1132–1139, 2016. https://doi.org/10.1002/jmri.25068.

    Article  PubMed  Google Scholar 

  43. Wehner, G. J., L. Jing, C. M. Haggerty, et al. Comparison of left ventricular strains and torsion derived from feature tracking and DENSE CMR. J. Cardiovasc. Magn. Reson. 20:1–11, 2018. https://doi.org/10.1186/s12968-018-0485-4.

    Article  Google Scholar 

  44. Wehner, G. J., J. D. Suever, C. M. Haggerty, et al. Validation of in vivo 2D displacements from spiral cine DENSE at 3T. J. Cardiovasc. Magn. Reson. 17:1–11, 2015. https://doi.org/10.1186/s12968-015-0119-z.

    Article  Google Scholar 

  45. Zhong, X., B. S. Spottiswoode, C. H. Meyer, et al. Imaging three-dimensional myocardial mechanics using navigator-gated volumetric spiral cine DENSE MRI. Magn. Reson. Med. 64:1089–1097, 2010. https://doi.org/10.1002/mrm.22503.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Research reported in this publication was supported by the National Heart, Lung, And Blood Institute of the National Institutes of Health under Award Number R01HL141901. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Availability of Data and Material

Data for this work will not be made available.

Code Availability

DENSEanalysis software used for this work is freely available for public use: (http://www.github.com/suever/denseanalysis/denseanalysis).

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5). Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Haggerty.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carruth, E.D., Fielden, S.W., Nevius, C.D. et al. 3D-Encoded DENSE MRI with Zonal Excitation for Quantifying Biventricular Myocardial Strain During a Breath-Hold. Cardiovasc Eng Tech 12, 589–597 (2021). https://doi.org/10.1007/s13239-021-00561-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-021-00561-8

Keywords

Navigation