Skip to main content

Advertisement

Log in

A quantitative yeast aging proteomics analysis reveals novel aging regulators

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Calorie restriction (CR) is the most robust longevity intervention, extending lifespan from yeast to mammals. Numerous conserved pathways regulating aging and mediating CR have been identified; however, the overall proteomic changes during these conditions remain largely unexplored. We compared proteomes between young and replicatively aged yeast cells under normal and CR conditions using the Stable-Isotope Labeling by Amino acids in Cell culture (SILAC) quantitative proteomics and discovered distinct signatures in the aging proteome. We found remarkable proteomic similarities between aged and CR cells, including induction of stress response pathways, providing evidence that CR pathways are engaged in aged cells. These observations also uncovered aberrant changes in mitochondria membrane proteins as well as a proteolytic cellular state in old cells. These proteomics analyses help identify potential genes and pathways that have causal effects on longevity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD018917. The RNA-seq data have been deposited to SRA under accession number PRJNA715646.

All experimental materials generated by this study are available upon request.

Code availability

Not applicable.

References

  1. Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A, et al. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature. 2009;459(7248):802–7. https://doi.org/10.1038/nature08085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kirmizis A, Santos-Rosa H, Penkett CJ, Singer MA, Vermeulen M, Mann M, et al. Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature. 2007;449(7164):928–32. https://doi.org/10.1038/nature06160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rappsilber J, Mann M. Analysis of the topology of protein complexes using cross-linking and mass spectrometry. CSH Protoc. 2007;2007:pdb prot4594. doi:https://doi.org/10.1101/pdb.prot4594.

  4. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–72. doi:https://doi.org/10.1038/nbt.1511.

  5. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10(4):1794–805. https://doi.org/10.1021/pr101065j.

    Article  CAS  PubMed  Google Scholar 

  6. da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. https://doi.org/10.1038/nprot.2008.211.

    Article  CAS  Google Scholar 

  7. Huang da W, Sherman BT, Zheng X, Yang J, Imamichi T, Stephens R et al. (2009) Extracting biological meaning from large gene lists with DAVID. Curr Protoc Bioinformatics, Chapter 13:Unit 13 1. doi:https://doi.org/10.1002/0471250953.bi1311s27.

  8. Oughtred R, Stark C, Breitkreutz B-J, Rust J, Boucher L, Chang C, et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res. 2019;47(D1):D529–41. https://doi.org/10.1093/nar/gky1079.

    Article  CAS  PubMed  Google Scholar 

  9. Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science. 2002;296(5569):910–3.

    Article  CAS  PubMed  Google Scholar 

  10. Jo MC, Liu W, Gu L, Dang W, Qin L. High-throughput analysis of yeast replicative aging using a microfluidic system. Proc Natl Acad Sci U S A. 2015;112(30):9364–9. https://doi.org/10.1073/pnas.1510328112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guarente L. Mitochondria–a nexus for aging, calorie restriction, and sirtuins? Cell. 2008;132(2):171–6. https://doi.org/10.1016/j.cell.2008.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Feser J, Tyler J. Chromatin structure as a mediator of aging. FEBS Lett. 2011;585(13):2041–8. https://doi.org/10.1016/j.febslet.2010.11.016.

    Article  CAS  PubMed  Google Scholar 

  13. Sahin E, Depinho RA. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature. 2010;464(7288):520–8. https://doi.org/10.1038/nature08982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kourtis N, Tavernarakis N. Cellular stress response pathways and ageing: intricate molecular relationships. EMBO J. 2011;30(13):2520–31. https://doi.org/10.1038/emboj.2011.162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Landis GN, Tower J. Superoxide dismutase evolution and life span regulation. Mech Ageing Dev. 2005;126(3):365–79. https://doi.org/10.1016/j.mad.2004.08.012.

    Article  CAS  PubMed  Google Scholar 

  16. Koga H, Kaushik S, Cuervo AM. Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev. 2011;10(2):205–15. https://doi.org/10.1016/j.arr.2010.02.001.

    Article  CAS  PubMed  Google Scholar 

  17. Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science. 2011;333(6046):1109–12. https://doi.org/10.1126/science.1201940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006;124(2):315–29. https://doi.org/10.1016/j.cell.2005.11.044.

    Article  CAS  PubMed  Google Scholar 

  19. Gorbunova V, Seluanov A, Mao Z, Hine C. Changes in DNA repair during aging. Nucleic Acids Res. 2007;35(22):7466–74. https://doi.org/10.1093/nar/gkm756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin SS, Manchester JK, Gordon JI. Enhanced gluconeogenesis and increased energy storage as hallmarks of aging in Saccharomyces cerevisiae. J Biol Chem. 2001;276(38):36000–7. https://doi.org/10.1074/jbc.M103509200.

    Article  CAS  PubMed  Google Scholar 

  21. Lund J, Tedesco P, Duke K, Wang J, Kim SK, Johnson TE. Transcriptional profile of aging in C. elegans. Curr Biol. 2002;12(18):1566–73.

    Article  CAS  PubMed  Google Scholar 

  22. Lesur I, Campbell JL. The transcriptome of prematurely aging yeast cells is similar to that of telomerase-deficient cells. Mol Biol Cell. 2004;15(3):1297–312. https://doi.org/10.1091/mbc.e03-10-0742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Laun P, Ramachandran L, Jarolim S, Herker E, Liang P, Wang J, et al. A comparison of the aging and apoptotic transcriptome of Saccharomyces cerevisiae. FEMS Yeast Res. 2005;5(12):1261–72. https://doi.org/10.1016/j.femsyr.2005.07.006.

    Article  CAS  PubMed  Google Scholar 

  24. Zhan M, Yamaza H, Sun Y, Sinclair J, Li H, Zou S. Temporal and spatial transcriptional profiles of aging in Drosophila melanogaster. Genome Res. 2007;17(8):1236–43. https://doi.org/10.1101/gr.6216607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. de Godoy LM, Olsen JV, Cox J, Nielsen ML, Hubner NC, Frohlich F, et al. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature. 2008;455(7217):1251–4. https://doi.org/10.1038/nature07341.

    Article  CAS  PubMed  Google Scholar 

  26. Feser J, Truong D, Das C, Carson JJ, Kieft J, Harkness T, et al. Elevated histone expression promotes life span extension. Mol Cell. 2010;39(5):724–35. https://doi.org/10.1016/j.molcel.2010.08.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xie F, Liu T, Qian WJ, Petyuk VA, Smith RD. Liquid chromatography-mass spectrometry-based quantitative proteomics. J Biol Chem. 2011;286(29):25443–9. https://doi.org/10.1074/jbc.R110.199703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cox J, Mann M. Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem. 2011;80:273–99. https://doi.org/10.1146/annurev-biochem-061308-093216.

    Article  CAS  PubMed  Google Scholar 

  29. Walther DM, Mann M (2011) Accurate quantification of more than 4000 mouse tissue proteins reveals minimal proteome changes during aging. Mol Cell Proteomics 10(2):M110 004523. doi:https://doi.org/10.1074/mcp.M110.004523.

  30. Jazwinski SM. Yeast longevity and aging–the mitochondrial connection. Mech Ageing Dev. 2005;126(2):243–8. https://doi.org/10.1016/j.mad.2004.08.016.

    Article  CAS  PubMed  Google Scholar 

  31. Thorpe PH, Bruno J, Rothstein R. Modeling stem cell asymmetry in yeast. Cold Spring Harb Symp Quant Biol. 2008;73:81–8. https://doi.org/10.1101/sqb.2008.73.010.

    Article  CAS  PubMed  Google Scholar 

  32. Mair W, Dillin A. Aging and survival: the genetics of life span extension by dietary restriction. Annu Rev Biochem. 2008;77:727–54. https://doi.org/10.1146/annurev.biochem.77.061206.171059.

    Article  CAS  PubMed  Google Scholar 

  33. Kaeberlein M, Powers RW 3rd, Steffen KK, Westman EA, Hu D, Dang N, et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science. 2005;310(5751):1193–6. https://doi.org/10.1126/science.1115535.

    Article  CAS  PubMed  Google Scholar 

  34. Steffen KK, MacKay VL, Kerr EO, Tsuchiya M, Hu D, Fox LA, et al. Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell. 2008;133(2):292–302. https://doi.org/10.1016/j.cell.2008.02.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vaquero A, Reinberg D. Calorie restriction and the exercise of chromatin. Genes Dev. 2009;23(16):1849–69. https://doi.org/10.1101/gad.1807009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science. 2000;289(5487):2126–8.

    Article  CAS  PubMed  Google Scholar 

  37. Lin SJ, Ford E, Haigis M, Liszt G, Guarente L. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev. 2004;18(1):12–6. https://doi.org/10.1101/gad.1164804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature. 2002;418(6895):344–8. https://doi.org/10.1038/nature00829.

    Article  CAS  PubMed  Google Scholar 

  39. Molin M, Yang J, Hanzen S, Toledano MB, Labarre J, Nystrom T. Life span extension and H(2)O(2) resistance elicited by caloric restriction require the peroxiredoxin Tsa1 in Saccharomyces cerevisiae. Mol Cell. 2011;43(5):823–33. https://doi.org/10.1016/j.molcel.2011.07.027.

    Article  CAS  PubMed  Google Scholar 

  40. Ristow M, Schmeisser S. Extending life span by increasing oxidative stress. Free Radic Biol Med. 2011;51(2):327–36. https://doi.org/10.1016/j.freeradbiomed.2011.05.010.

    Article  CAS  PubMed  Google Scholar 

  41. Vermeulen M, Eberl HC, Matarese F, Marks H, Denissov S, Butter F, et al. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell. 2010;142(6):967–80. https://doi.org/10.1016/j.cell.2010.08.020.

    Article  CAS  PubMed  Google Scholar 

  42. Rattan SI. Synthesis, modification and turnover of proteins during aging. Adv Exp Med Biol. 2010;694:1–13.

    Article  CAS  PubMed  Google Scholar 

  43. Powell CD, Quain DE, Smart KA. The impact of brewing yeast cell age on fermentation performance, attenuation and flocculation. FEMS Yeast Res. 2003;3(2):149–57. https://doi.org/10.1016/S1567-1356(03)00002-3.

    Article  CAS  PubMed  Google Scholar 

  44. Erjavec N, Larsson L, Grantham J, Nystrom T. Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p. Genes Dev. 2007;21(19):2410–21. https://doi.org/10.1101/gad.439307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Orlandi I, Bettiga M, Alberghina L, Nystrom T, Vai M. Sir2-dependent asymmetric segregation of damaged proteins in ubp10 null mutants is independent of genomic silencing. Biochim Biophys Acta. 2010;1803(5):630–8. https://doi.org/10.1016/j.bbamcr.2010.02.009.

    Article  CAS  PubMed  Google Scholar 

  46. Kaeberlein M. Lessons on longevity from budding yeast. Nature. 2010;464(7288):513–9. https://doi.org/10.1038/nature08981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Friis RM, Wu BP, Reinke SN, Hockman DJ, Sykes BD, Schultz MC. A glycolytic burst drives glucose induction of global histone acetylation by picNuA4 and SAGA. Nucleic Acids Res. 2009;37(12):3969–80. https://doi.org/10.1093/nar/gkp270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://doi.org/10.1016/j.cell.2013.05.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kaushik S, Cuervo AM. Proteostasis and aging. Nat Med. 2015;21(12):1406–15. https://doi.org/10.1038/nm.4001.

    Article  CAS  PubMed  Google Scholar 

  50. Janssens GE, Meinema AC, Gonzalez J, Wolters JC, Schmidt A, Guryev V, et al. Protein biogenesis machinery is a driver of replicative aging in yeast. Elife. 2015;4: e08527. https://doi.org/10.7554/eLife.08527.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Berger AC, Vanderford TH, Gernert KM, Nichols JW, Faundez V, Corbett AH. Saccharomyces cerevisiae Npc2p is a functionally conserved homologue of the human Niemann-Pick disease type C 2 protein, hNPC2. Eukaryot Cell. 2005;4(11):1851–62. https://doi.org/10.1128/EC.4.11.1851-1862.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Newton J, Milstien S, Spiegel S. Niemann-Pick type C disease: The atypical sphingolipidosis. Adv Biol Regul. 2018;70:82–8. https://doi.org/10.1016/j.jbior.2018.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang S, Ren J, Li H, Zhang Q, Armstrong JS, Munn AL, et al. Ncr1p, the yeast ortholog of mammalian Niemann Pick C1 protein, is dispensable for endocytic transport. Traffic. 2004;5(12):1017–30. https://doi.org/10.1111/j.1600-0854.2004.00241.x.

    Article  CAS  PubMed  Google Scholar 

  54. Malathi K, Higaki K, Tinkelenberg AH, Balderes DA, Almanzar-Paramio D, Wilcox LJ, et al. Mutagenesis of the putative sterol-sensing domain of yeast Niemann Pick C-related protein reveals a primordial role in subcellular sphingolipid distribution. J Cell Biol. 2004;164(4):547–56. https://doi.org/10.1083/jcb.200310046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Winkler MBL, Kidmose RT, Szomek M, Thaysen K, Rawson S, Muench SP, et al. Structural insight into eukaryotic sterol transport through Niemann-Pick type C proteins. Cell. 2019. https://doi.org/10.1016/j.cell.2019.08.038.

    Article  PubMed  Google Scholar 

  56. Hu Z, He B, Ma L, Sun Y, Niu Y, Zeng B. Recent advances in ergosterol biosynthesis and regulation mechanisms in Saccharomyces cerevisiae. Indian J Microbiol. 2017;57(3):270–7. https://doi.org/10.1007/s12088-017-0657-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vambutas A, Ackerman SH, Tzagoloff A. Mitochondrial translational-initiation and elongation factors in Saccharomyces cerevisiae. Eur J Biochem. 1991;201(3):643–52.

    Article  CAS  PubMed  Google Scholar 

  58. Ott M, Amunts A, Brown A. Organization and regulation of mitochondrial protein synthesis. Annu Rev Biochem. 2016;85:77–101. https://doi.org/10.1146/annurev-biochem-060815-014334.

    Article  CAS  PubMed  Google Scholar 

  59. Medvedik O, Lamming DW, Kim KD, Sinclair DA. MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol. 2007;5(10): e261. https://doi.org/10.1371/journal.pbio.0050261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Beach A, Leonov A, Arlia-Ciommo A, Svistkova V, Lutchman V, Titorenko VI. Mechanisms by which different functional states of mitochondria define yeast longevity. Int J Mol Sci. 2015;16(3):5528–54. https://doi.org/10.3390/ijms16035528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guaragnella N, Coyne LP, Chen XJ, Giannattasio S. (2018) Mitochondria-cytosol-nucleus crosstalk: learning from Saccharomyces cerevisiae. FEMS Yeast Res 18(8). doi:https://doi.org/10.1093/femsyr/foy088

  62. Liu Z, Butow RA. Mitochondrial retrograde signaling. Annu Rev Genet. 2006;40:159–85. https://doi.org/10.1146/annurev.genet.40.110405.090613.

    Article  CAS  PubMed  Google Scholar 

  63. Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, et al. Mitochondrial membrane potential. Anal Biochem. 2018;552:50–9. https://doi.org/10.1016/j.ab.2017.07.009.

    Article  CAS  PubMed  Google Scholar 

  64. Jury DR, Kaveti S, Duan ZH, Willard B, Kinter M, Londraville R. Effects of calorie restriction on the zebrafish liver proteome. Comp Biochem Physiol Part D Genomics Proteomics. 2008;3(4):275–82. https://doi.org/10.1016/j.cbd.2008.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Valle A, Sastre-Serra J, Roca P, Oliver J. Modulation of white adipose tissue proteome by aging and calorie restriction. Aging Cell. 2010;9(5):882–94. https://doi.org/10.1111/j.1474-9726.2010.00613.x.

    Article  CAS  PubMed  Google Scholar 

  66. Steinkraus KA, Kaeberlein M, Kennedy BK. Replicative aging in yeast: the means to the end. Annu Rev Cell Dev Biol. 2008;24:29–54. https://doi.org/10.1146/annurev.cellbio.23.090506.123509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim S, Villeponteau B, Jazwinski SM. Effect of replicative age on transcriptional silencing near telomeres in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1996;219(2):370–6. https://doi.org/10.1006/bbrc.1996.0240.

    Article  CAS  PubMed  Google Scholar 

  68. Konig J, Besoke F, Stuetz W, Malarski A, Jahreis G, Grune T, et al. Quantification of age-related changes of alpha-tocopherol in lysosomal membranes in murine tissues and human fibroblasts. BioFactors. 2016;42(3):307–15. https://doi.org/10.1002/biof.1274.

    Article  CAS  PubMed  Google Scholar 

  69. Demais V, Barthelemy A, Perraut M, Ungerer N, Keime C, Reibel S, et al. Reversal of pathologic lipid accumulation in NPC1-deficient neurons by drug-promoted release of LAMP1-coated lamellar inclusions. J Neurosci. 2016;36(30):8012–25. https://doi.org/10.1523/JNEUROSCI.0900-16.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang YH, Twu YC, Wang CK, Lin FZ, Lee CY, Liao YJ. (2018) Niemann-Pick type C2 protein regulates free cholesterol accumulation and influences hepatic stellate cell proliferation and mitochondrial respiration function. Int J Mol Sci 19(6). doi:https://doi.org/10.3390/ijms19061678

  71. Guo H, Zhao M, Qiu X, Deis JA, Huang H, Tang QQ, et al. Niemann-Pick type C2 deficiency impairs autophagy-lysosomal activity, mitochondrial function, and TLR signaling in adipocytes. J Lipid Res. 2016;57(9):1644–58. https://doi.org/10.1194/jlr.M066522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kennedy BE, Charman M, Karten B. Niemann-Pick Type C2 protein contributes to the transport of endosomal cholesterol to mitochondria without interacting with NPC1. J Lipid Res. 2012;53(12):2632–42. https://doi.org/10.1194/jlr.M029942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kennedy BE, Madreiter CT, Vishnu N, Malli R, Graier WF, Karten B. Adaptations of energy metabolism associated with increased levels of mitochondrial cholesterol in Niemann-Pick type C1-deficient cells. J Biol Chem. 2014;289(23):16278–89. https://doi.org/10.1074/jbc.M114.559914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Solanko LM, Sullivan DP, Sere YY, Szomek M, Lunding A, Solanko KA, et al. Ergosterol is mainly located in the cytoplasmic leaflet of the yeast plasma membrane. Traffic. 2018;19(3):198–214. https://doi.org/10.1111/tra.12545.

    Article  CAS  PubMed  Google Scholar 

  75. Nielson JR, Fredrickson EK, Waller TC, Rendon OZ, Schubert HL, Lin Z et al. (2017) Sterol oxidation mediates stress-responsive Vms1 translocation to mitochondria. Mol Cell 68(4):673–85 e6. doi:https://doi.org/10.1016/j.molcel.2017.10.022

  76. Altmann K, Westermann B. Role of essential genes in mitochondrial morphogenesis in Saccharomyces cerevisiae. Mol Biol Cell. 2005;16(11):5410–7. https://doi.org/10.1091/mbc.e05-07-0678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Krumpe K, Frumkin I, Herzig Y, Rimon N, Ozbalci C, Brugger B, et al. Ergosterol content specifies targeting of tail-anchored proteins to mitochondrial outer membranes. Mol Biol Cell. 2012;23(20):3927–35. https://doi.org/10.1091/mbc.E11-12-0994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Infante RE, Wang ML, Radhakrishnan A, Kwon HJ, Brown MS, Goldstein JL. NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc Natl Acad Sci U S A. 2008;105(40):15287–92. https://doi.org/10.1073/pnas.0807328105.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Vilaca R, Silva E, Nadais A, Teixeira V, Matmati N, Gaifem J, et al. Sphingolipid signalling mediates mitochondrial dysfunctions and reduced chronological lifespan in the yeast model of Niemann-Pick type C1. Mol Microbiol. 2014;91(3):438–51. https://doi.org/10.1111/mmi.12470.

    Article  CAS  PubMed  Google Scholar 

  80. Leupold S, Hubmann G, Litsios A, Meinema AC, Takhaveev V, Papagiannakis A et al. (2019) Saccharomyces cerevisiae goes through distinct metabolic phases during its replicative lifespan. Elife 8. doi:https://doi.org/10.7554/eLife.41046

  81. Peric M, Bou Dib P, Dennerlein S, Musa M, Rudan M, Lovric A, et al. Crosstalk between cellular compartments protects against proteotoxicity and extends lifespan. Sci Rep. 2016;6:28751. https://doi.org/10.1038/srep28751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Shelley Berger (UPenn) for her advice on this project. We also thank Dr. Michiel Vermeulen and Pascal Jansen (The Radboud University Medical Centre) for providing mass spectrometry analysis service.

Funding

This study was supported by NIH grants K99/R00AG037646, R56AG049714, R01AG052507, and R41/R42AG058368 to WD, CPRIT Scholar award R1306 to WD, Welch Foundation grant Q-1986–20190330 to WD, NSF award #1720215, #1761839, and internal support of the University of Tennessee at Chattanooga to HQ.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, YS and WD; data curation, YS, RY, and WD; formal analysis, YS, RY, HG, HQ, and WD; funding acquisition, HQ, and WD; investigation, YS, RY, and HG; methodology, YS, RY, HG, and WD; project administration, YS and WD; resources, HQ, and WD; supervision, WD; validation, YS, RY and WD; writing — original draft, YS, RY and WD; writing — review and editing, YS, RY, HQ, and WD.

Corresponding author

Correspondence to Weiwei Dang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have agreed to the content of this manuscript for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Yu, R., Guo, HB. et al. A quantitative yeast aging proteomics analysis reveals novel aging regulators. GeroScience 43, 2573–2593 (2021). https://doi.org/10.1007/s11357-021-00412-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00412-3

Keywords

Navigation