Skip to main content
Log in

Interaction of Cerium, Lanthanum, and Samarium Oxides at 1250°C

  • PHYSICOCHEMICAL MATERIALS RESEARCH
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Materials produced from cerium oxides stabilized by rare-earth metal (REM) oxides are promising for medical and engineering applications for their unique properties. The CeO2–La2O3–Ln2O3 phase diagrams serve as a physicochemical basis for developing solid electrolytes for fuel cells, oxygen sensors, catalyst carriers, protective coatings on alloys, etc. Phase equilibria and structural transformations in the CeO2–La2O3–Sm2O3 system at 1250°C were studied by X-ray diffraction over the entire composition range. The studies revealed fields of solid solutions based on the cubic (F) fluorite-type modification of CeO2, monoclinic (B) and cubic (C) modifications of Sm2O3, and hexagonal (A) modification of La2O3 in the ternary CeO2–La2O3–Sm2O3 system at 1250°C had predominantly cubic phases in equilibrium: CeO2-based F-phase with Fm3m space group and Sm2O3-based C-phase with Ia3 space group. The lattice parameters of the fluorite-type (F-CeO2) cubic solid solutions changed from a = 0.5409 nm for pure CeO2 to a = 0.5515 nm for the two-phase (F + C) 55 CeO2–22.5 La2O3–22.5 Sm2O3 sample (mol.%) along section La2O3 : Sm2O3 = = 1 : 1, to a = 0.5548 nm for the two-phase 55 CeO2–33.75 La2O3–11.25 Sm2O3 sample along section La2O3: Sm2O3 = 3 : 1, and to a = 0.5478 nm for the two-phase (F + C) 60 CeO2–10 La2O3–30 Sm2O3 sample along section La2O3 : Sm2O3 = 1 : 3. At 1250°C, the cubic F-CeO2 fluorite-type solid solutions are in equilibrium with all phases formed in the system. The isothermal section of the CeO2–La2O3–Sm2O3 phase diagram at 1250°C contains two three-phase (A + F + B, F +B + C) and five two-phase (A + F, A + B, F + B, B + C, F + C) regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. V.V. Kharton, F.M. Figueiredo, L. Navarro, E.N. Naumovich, A.V. Kovalevsky, A.A. Yaremchenko, A.P. Viskup, A. Garneiro, F.M.B. Marques, and J.R. Frade, “Ceria-based materials for solid oxide fuel cells,” J. Mater. Sci., 36, 1105–1117 (2001).

    Article  CAS  Google Scholar 

  2. K. Sato, H. Yugami, and T. Hashida, “Effect of rare-earth oxides on fracture properties of ceria ceramics,” J. Mater. Sci., 39, 5765–5770 (2004).

    Article  CAS  Google Scholar 

  3. Baolin Zhu, Yuki Tahara, Kazufumi Yasunaga, Toshiyuki Matsui, Fuminobu Hori, and Akihiro Iwase, “Study on analysis crystal structure in CeO2 doped with Er2O3 or Gd2O3,” J. Rare Earth, 28, 164–167 (2010).

  4. J. Kimpton, T.H. Randle, and J. Drennan, “Investigation of electrical conductivity as f function of dopant-ion radius in the systems Zr0.75Ce0.08M0.17O1.92 (M = Nd, Sm, Gd, Dy, Ho, Y, Er, Yb, Sc),” Solid State Ionics, 149, 89–98 (2002).

    Article  CAS  Google Scholar 

  5. P.S. Anjana, T. Joseph, and T.S. Mailadil, “Microwave dielectric properties of (1–x) CeO2–x RE2O3 (RE = La, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb, and Y) (0 ≤ x ≤ 1) ceramics,” J. Alloys Compd., 490, 208–213 (2010).

    Article  CAS  Google Scholar 

  6. B. Zhu, H. Ohno, S. Kosugi, F. Hori, K. Yasunaga, N. Ishikawa, and A. Iwase, “Effects of swift heavy ion irradiation on the structure of Er2O3-doped CeO2,” Nucl. Instrum. Methods Phys. Res., 268, 3199–3202 (2010).

    Article  CAS  Google Scholar 

  7. A.M. Garrido Pedrosa, J.E.C. Silva, P.M. Pimentel, D.M.A. Melo, and F.R.G. Silva, “Synthesis and optical investigation of systems involving mixed Ce and Er oxides,” J. Alloys Compd., 374, 223–225 (2004).

    Article  CAS  Google Scholar 

  8. S. Maschio, E. Aneggi, A. Trovarelli, and V. Sergo, “Influence of erbia or europia doping on crystal structure and microstructure of ceria-zirconia (CZ) solid solutions,” Ceram. Int., 34, 1327–1333 (2008).

    Article  CAS  Google Scholar 

  9. T. Ito, M. Yoshino, K. Iwasaki, T. Matsui, and T. Nagasaki, “Photoluminescence of Er-containing metal oxide in U-band,” in: Proc. Int. Symp. EcoTopia Science (2007), pp. 128–130.

  10. M. Foex, F. Sibieude, A. Rouanet, and D. Hernandez, “Crystal-chemical effect of splat-cooling on a 30 mol.% CeO2 70 mol. % La2O3 mixed oxide,” J. Mater. Sci., 10, 1255–1257 (1975).

    Article  CAS  Google Scholar 

  11. G. Brauer and H. Gradinger, “On heterotypical mixed phases in rare earth oxides,” Z. Anorg. Allg. Chem., 276, 209–226 (1954).

    Article  CAS  Google Scholar 

  12. G. Bacquet, C. Bouysset, and D. Hernandez, “E.S.R. of Gd3+ in La2O3 and its solid solutions with CeO2,” J. Phys., 37, No. 12, 204–207 (1976).

    Google Scholar 

  13. D.J.M. Bevan and A.W. Mann, “The crystal structure of Y7O6F9,” Acta Cryst., B31, 1406–1411 (1975).

    Article  CAS  Google Scholar 

  14. N. Minkova and S. Aslanian, “Isomorphic substitutions in the CeO2La2O3 system at 850°C,” Cryst. Res. Technol., 24, 351–354 (1989).

    Article  CAS  Google Scholar 

  15. B.J. Sung, C.W. Kil, and L.C. Hee, “The crystal structure of ionic conductor LaxCe1–xO2–x/2,” J. Eur. Ceram. Soc., 24, 1291–1294 (2004).

    Article  Google Scholar 

  16. B.C. Morris, W.R. Flavell, W.C. Mackrodt, and M.A. Morris, “Lattice parameter changes in the mixed oxide system LaxCe1–xO2–x/2—a combined experimental and theoretical study,” J. Mater. Chem., 3, No. 10, 1007 (1993).

  17. F. Sibieude, G. Schiffmacher, and P. Caro, “Electron microscopic study of modulated structures in the La2O3–CeO2 system regions rich in La2O3,” J. Solid State Chem., 23, No. 34, 361367 (1978).

  18. E.R. Andrievskaya, O.A. Kornienko, A.V. Sameljuk, and A. Sayir, “Phase relation studies in the CeO2–La2O3 system at 1100 to 1500°C,” J. Eur. Ceram. Soc., 31, No. 7, 1277–1283 (2011).

    Article  CAS  Google Scholar 

  19. B.P. Mandal, V. Grover, and A.K. Tyagi, “Phase relations, lattice thermal expansion in Ce1–xSmxO2–x/2 systems and stabilization of cubic RE2O3 (RE: Eu, Sm),” Mater. Sci. Eng. A, 430, 120–124 (2006).

  20. D.J.M. Bevan and E. Sammerville, Handbook on the Physics and Chemistry on Rare Earths, Elsevier, North-Holland (1979), Vol. 3, p. 664.

  21. O.R. Andrievskaya, O.A. Kornienko, V.S. Gorodov, K.A. Cherkasova, and V.O. Zgurovets, “Phase relations in the CeO2–Sm2O3 system at 1500°C,” Sovr. Probl. Materialoved., No. 17, 25–29 (2008).

  22. O.R. Andrievskaya, O.A. Kornienko, and Yu.V. Yurchenko, “Phase relation studies in the CeO2–Sm2O3 system at 1500 to 600°C in air,” Res. Dev. Mater. Sci., 12, No. 4, 1308–1314 (2020), https://doi.org/10.31031/RDMS.2020.12.000795.

  23. O.A. Kornienko, “Interaction of lanthanum and samarium oxides at 1250°C,” Ukr. Khim. Zh., 84, No. 3, 28–33 (2018).

    CAS  Google Scholar 

  24. O.R. Andrievskya, Phase Equilibria in Systems of Hafnium, Zirconium, and Yttrium Oxides with Rare Earth Metal Oxides: Monograph [in Russian], Naukova Dumka, Kyiv (2010), p. 470.

  25. O.A. Kornienko, O.I. Bykov, A.V. Samelyuk, and Yu.V. Yurchenko, “Isothermal section of the CeO2–La2O3–Eu2O3 phase diagram at 1250°C,” Ukr. Khim. Zh., 86, No. 3, 35–47 (2020).

    CAS  Google Scholar 

  26. O.R. Andrievska, O.A. Kornienko, O.I. Bykov, A.V. Sameliuk, and Z.D. Bohatyriova, “Interaction of ceria and erbia in air within temperature range 1500–600°C,” J. Eur. Ceram. Soc., 40, Issue 8, 3098–3103 (2020), https://doi.org/10.1016/j.jeurceramsoc.2020.03.002.

    Article  CAS  Google Scholar 

  27. O.A. Kornienko, A.V. Sameljuk, O.I. Bykov, Yu.V. Yurchenko, and A.K. Barshchevskaya, “Phase relation studies in the CeO2–La2O3–Er2O3 system at 1500°C,” J. Eur. Ceram. Soc., 40, Issue 12, 4184–4190 (2020), https://doi.org/10.1016/j.jeurceramsoc.2020.04.042.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Education and Science of Ukraine (Grant No. M/56-2020, Joint Ukraine–Belarus project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O.A. Korniienko.

Additional information

O.R. Andrievskaya is deceased

Translated from Poroshkova Metallurgiya, Vol. 60, Nos. 1–2 (537), pp. 121–132, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korniienko, O., Andrievskaya, O., Bykov, O. et al. Interaction of Cerium, Lanthanum, and Samarium Oxides at 1250°C. Powder Metall Met Ceram 60, 97–104 (2021). https://doi.org/10.1007/s11106-021-00219-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-021-00219-z

Keywords

Navigation