Skip to main content

Advertisement

Log in

Theoretical Analysis of Energy Efficiency of Plasma-Assisted Heterogeneous Activation of Nitrogen for Ammonia Synthesis

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

One of the rate limiting steps in catalytic ammonia synthesis is a nitrogen dissociation on a catalyst surface, which can be promoted by vibrational excitation of nitrogen molecules. In this work, the efficiency of plasma assisted heterogeneous nitrogen activation via vibrational excitation on the Ru surface is investigated. The analysis consists of two parts: in the first, ab initio calculations are performed for the adsorption and dissociation energy pathways of \({\text{N}}_{{\text{2}}}\) on terrace and step sites and heterogeneous vibrational energy relaxation time of adsorbed nitrogen molecule is calculated using ab initio molecular dynamics. The second part includes the solution of the chemical kinetic equations for vibrationally excited molecules both in the gas phase and on the surface, and an estimation of energy cost of heterogeneous plasma activation of nitrogen. It is shown that heterogeneous vibrational energy relaxation of nitrogen molecule on the Ru surface is rather fast, and results in relatively high energy cost of vibrational nitrogen activation, which is 16 eV/molec for atmospheric pressure and 5 eV/molec for P = 4 Torr according to our calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) Nat Geosci 1:636–639. ISSN 1752-0908

  2. Haber F, Le Rossignol R (1913) Zeitschrift fГjr Elektrochemie und angewandte physikalische Chemie 19:53–72

    CAS  Google Scholar 

  3. Honkala K, Hellman A, Remediakis I, Logadottir A, Carlsson A, Dahl S, Christensen CH, Nørskov JK (2005) Science 307:555–558

    Article  CAS  Google Scholar 

  4. Logadottir A, Nørskov JK (2003) J Catal 220:273–279

    Article  CAS  Google Scholar 

  5. Zhang C, Lynch M, Hu P (2002) Surf Sci 496:221–230

    Article  CAS  Google Scholar 

  6. Vojvodic A, Medford AJ, Studt F, Abild-Pedersen F, Khan TS, Bligaard T, Nørskov J (2014) Chem Phys Lett 598:108–112. ISSN 0009-2614

  7. Jacobi K (2000) Physica Status Solidi (a) 177:37–51

    Article  CAS  Google Scholar 

  8. Mortensen JJ, Morikawa Y, Hammer B, Nørskov JK (1997) J Catal 169:85–92

    Article  CAS  Google Scholar 

  9. Cherkasov N, Ibhadon A, Fitzpatrick P (2015) Chem Eng Process 90:24–33

    Article  CAS  Google Scholar 

  10. Eremin E, Maltsev A, Syaduk V (1971) Russ J Phys Chem USSR 45:635

    Google Scholar 

  11. Hong J, Prawer S, Murphy AB (2018) ACS Sustain Chem Eng 6:15–31

    Article  CAS  Google Scholar 

  12. Uyama H, Matsumoto O (1989) Plasma Chem Plasma Process 9:13–24. ISSN 1572-8986

  13. Shah J, Wang W, Bogaerts A, Carreon ML (2018) ACS Appl Energy Mater 1:4824–4839

    Article  CAS  Google Scholar 

  14. Horvath G, Mason NJ, Polachova L, Zahoran M, Moravsky L, Matejcik S (2010) Plasma Chem Plasma Process 30:565–577. ISSN 1572-8986

  15. Horvath G, Skalny J, Mason N, Klas M, Zahoran M, Vladoiu R, Manole M (2009) Plasma Sources Sci Technol 18:034016

    Article  Google Scholar 

  16. Kim HH, Teramoto Y, Ogata A, Takagi H, Nanba T (2016) Plasma Chem Plasma Process 36:45–72

    Article  Google Scholar 

  17. Rafiqul I, Weber C, Lehmann B, Voss A (2005) Energy 30:2487–2504

    Article  CAS  Google Scholar 

  18. Fridman A (2008) Plasma chemistry. Cambridge University Press

    Book  Google Scholar 

  19. Bogaerts A, Neyts EC (2018) ACS Energy Lett 3:1013–1027

    Article  CAS  Google Scholar 

  20. Juurlink LBF, McCabe PR, Smith RR, DiCologero CL, Utz AL (1999) Phys Rev Lett 83(4):868–871

    Article  CAS  Google Scholar 

  21. Nattino F, Ueta H, Chadwick H, van Reijzen ME, Beck RD, Jackson B, van Hemert MC, Kroes GJ (2014) J Phys Chem Lett 5:1294–1299

    Article  CAS  Google Scholar 

  22. Jackson B, Nave S (2013) J Chem Phys 138:174705

    Article  Google Scholar 

  23. Romm L, Katz G, Kosloff R, Asscher M (1997) J Phys Chem B 101:2213–2217

    Article  CAS  Google Scholar 

  24. Mehta P, Barboun P, Herrera FA, Kim J, Rumbach P, Go DB, Hicks JC, Schneider WF (2018) Nat Catal 1:269–275. ISSN 2520-1158

  25. Shigeishi RA, King DA (1977) Surf Sci 62:379–385

    Article  CAS  Google Scholar 

  26. Persson BNJ, Persson M (1980) Solid State Commun 36:175–179

    Article  CAS  Google Scholar 

  27. Kumar S, Jiang H (2019) Phys Rev Lett 123:156101

    Article  CAS  Google Scholar 

  28. Kresse G, Joubert D (1999) Phys Rev B 59:1758

  29. Blochl PE (1994) Phys Rev B 50(24):17953–17979

    Article  CAS  Google Scholar 

  30. Hammer B, Hansen LB, Norskov JK (1999) Phys Rev Lett 59:7413

    Google Scholar 

  31. Monkhorst HJ, Pack JD (1976) Phys Rev B 13(12):5188–5192

    Article  Google Scholar 

  32. Henkelman G, Uberuaga BP, Jansson H (2000) J Chem Phys 113:9901–9904

    Article  CAS  Google Scholar 

  33. Dahl S, Logadottir A, Egeberg RC, Larsen JH, Chorkendorff I, Tornqvist E, Norskov JK (1999) Phys Rev Lett 83(9):1814–1817

    Article  Google Scholar 

  34. Herron JA, Tonelli S, Mavrikakis M (2013) Surf Sci 614:64–74

    Article  CAS  Google Scholar 

  35. Michiels R, Engelmann Y, Bogaerts A (2020) J Phys Chem C 124(47):25859–25872

    Article  CAS  Google Scholar 

  36. Deminsky M, Chorkov V, Belov G, Cheshigin I, Knizhnik A, Shulakova E, Shulakov M, Iskandarova I, Alexandrov V, Petrusev A, Kirillov I, Strelkova M, Umanski S, Potapkin B (2003) Comput Mater Sci 28:169–178. ISSN 0927-0256 Proceedings of the symposium on software development for process and materials design

  37. Tskhakaya D, Matyash K, Schneider R, Taccogna F (2007) Contrib Plasma Phys 47:563–594

    Article  Google Scholar 

  38. Butterworth T, Van de Steeg A, Van den Bekerom D, Minea T, Righart T, Ong Q, Van Rooij J (2020) Plasma Sources Sci Technol 29:095007

    Article  CAS  Google Scholar 

  39. Hellman A, Honkala K, Remediakis I, Logadottir A, Carlsson A, Dahl S, Christensen C, Nørskov J (2009) Surf Sci 603:1731–1739. ISSN 0039-6028 special Issue of Surface Science dedicated to Prof. Dr. h.c. mult. Gerhard Ertl, Nobel-Laureate in Chemistry 2007

  40. Jiao F, Xu B (2019) Adv Mater 31:1805173

    Article  Google Scholar 

  41. Rafiqul I, Weber C, Lehmann B, Voss A (2005) Energy 30:2487–2504. ISSN 0360-5442

Download references

Acknowledgements

This work has been carried out under support of NRC “Kurchatov Institute” (Grant #2073 from 09.10.2020) and using computing resources of the federal collective usage center Complex for Simulation and Data Processing for Mega-science Facilities at the NRC “Kurchatov Institute”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. M. Kedalo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 129 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kedalo, Y.M., Knizhnik, A.A. & Potapkin, B.V. Theoretical Analysis of Energy Efficiency of Plasma-Assisted Heterogeneous Activation of Nitrogen for Ammonia Synthesis. Plasma Chem Plasma Process 41, 1279–1291 (2021). https://doi.org/10.1007/s11090-021-10199-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-021-10199-y

Keywords

Navigation