Skip to main content
Log in

N = 2 PNGB quintessence dark energy

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this paper, we show that a pseudo-Nambu–Goldstone boson (PNGB) quintessence of spontaneous symmetry breaking (SSB) is responsible for an epoch of late-time cosmic acceleration. We suggest that an N = 2PNGB quintessence with SSB can give rise to the fast-roll cosmic acceleration in the evolution of the Universe. In the N = 2 PNGB quintessence model, the standard slow-roll condition in which the absolute value of the tachyonic mass squared \(|m_q^2|\) of this model is much less than the square of the Hubble constant \(H^2\), is broken down to the fast-roll condition, \(|m_q^2|=O(H^2)\). However, the fast-rolling associated with the N = 2 PNGB quintessence of SSB is shown to lead to the epoch of late-time cosmic acceleration. Indeed, in our PNGB model, this epoch can be quite long-lasting because the mass of the N = 2 PNGB quintessence field is extremely small at \(m_q \approx 10^{-33} \mathrm {eV}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003)

    Article  ADS  Google Scholar 

  2. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  3. S. Perlmuter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  4. D.N. Spergel et al., Astrophys. J. Suppl. 170, 377 (2007)

    Article  ADS  Google Scholar 

  5. M. Tegmark et al., Phys. Rev. D 74, 123507 (2006)

    Article  ADS  Google Scholar 

  6. S. Weinberg, Rev. Mod. Phys. 61, 1 (1988)

    Article  ADS  Google Scholar 

  7. S.M. Carroll, Living Rev. Relat. 4, 1 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  8. J.A. Frieman, C. Hill, A. Stebbins, I. Waga, Phys. Rev. Lett. 75, 2077 (1995)

    Article  ADS  Google Scholar 

  9. B. Ovrut, S. Thomas, Phys. Lett. B 273, 227 (1991)

    Article  ADS  Google Scholar 

  10. J.E. Kim, H.P. Nilles, Phys. Lett. B 553, 1 (2003)

    Article  ADS  Google Scholar 

  11. D. Adak, K. Dutta, Phys. Rev. D 90, 043502 (2014)

    Article  ADS  Google Scholar 

  12. L.J. Hall, Y. Nomura, S.J. Oliver, Phys. Rev. Lett. 95, 141302 (2005)

    Article  ADS  Google Scholar 

  13. R. Barbieri, L.J. Hall, S.J. Oliver, A. Strumia, Phys. Lett. B 625, 189 (2005)

    Article  ADS  Google Scholar 

  14. P.Q. Hung, Nucl. Phys. B 747, 55 (2005)

    Article  ADS  Google Scholar 

  15. A. Abrahamse, A. Albrecht, M. Barnard, B. Bozek, Phys. Rev. D 77, 103503 (2008)

    Article  ADS  Google Scholar 

  16. E. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  ADS  Google Scholar 

  17. K. Choi, Phys. Rev. D 62, 0430509 (2000)

    Google Scholar 

  18. N. Kaloper, L. Sorbo, JCAP 0604, 007 (2006)

    Article  ADS  Google Scholar 

  19. E.J. Copeland, N.J. Nunes, F. Rosati, Phys. Rev. D 62, 123503 (2000)

    Article  ADS  Google Scholar 

  20. Y. Aghababaie, C.P. Burgess, S.L. Parameswaran, F. Quevedo, Nucl. Phys. B 680, 389 (2003)

    Article  ADS  Google Scholar 

  21. P. Fre, M. Trigiante, A.V. Proeyen, Class. Quant. Grav. 19, 4167 (2002)

    Article  ADS  Google Scholar 

  22. M. Kamionkowski, J. Pradler, D.G.E. Walker, Phys. Rev. Lett. 113, 251302 (2014)

    Article  ADS  Google Scholar 

  23. R. Kollosh, A. Linde, S. Prokushkin, M. Shmakova, Phys. Rev. D 65, 105016 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Linde, JHEP 0111, 052 (2001)

    Article  ADS  Google Scholar 

  25. C. Kolda, D.H. Lyth, Phys. Lett. B 458, 1972201 (1999)

    Article  Google Scholar 

  26. P. Svrcek, Cosmological Constant and Axions in String Theory (2006) [arXiv: hep-th/0607086]

  27. F. Mandl, G. Shaw, Qauntum Field Theory, 2nd Edition. Wiley

  28. A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, J. March-Russell, Phys. Rev. D 81, 123530 (2010)

    Article  ADS  Google Scholar 

  29. A.K. Gupta, C.T. Hill, R. Holman, E.W. Kolb, Phys. Rev. D 45, 441 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  30. G. Felder, L. Kofman, A. Linde, Phys. Rev. D 64, 123517 (2001)

    Article  ADS  Google Scholar 

  31. V. Mukhanov, S. Winitzki, Introduction to Quantum Effects in Gravity, 4th edn. (Cambridge University Press, New York, 2012)

    MATH  Google Scholar 

  32. D. Cormier, R. Holman, Phys. Rev. D 62, 023520 (2000)

    Article  ADS  Google Scholar 

  33. A. Linde, Phys. Rev. D 49, 748 (1994)

    Article  ADS  Google Scholar 

  34. C.T. Hill, D.N. Schramm, J.N. Fry, Comments Nucl. Part. Phys. 19, 1 (1989)

    Google Scholar 

  35. G. Lazarides, Q. Shafi, Phys. Lett. 115B, 21 (1982)

    Article  ADS  Google Scholar 

  36. C. Chatterjee, T. Higaki, M. Nitta, Phys. Rev. D 101, 075026 (2020)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Research Foundation of Korea(NRF) Grants funded by the Korea Government(MSIT) (No. NRF-2020R1F1A1068410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungjai Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheon, K., Lee, J. N = 2 PNGB quintessence dark energy. J. Korean Phys. Soc. 79, 336–342 (2021). https://doi.org/10.1007/s40042-021-00235-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00235-7

Keywords

Navigation