Skip to main content
Log in

Europium ions as a spectroscopic probe in the study of PMMA-SiO2 hybrid microstructure with variable coupling agent

  • Original Paper: Characterization methods of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Eu3+-doped PMMA-SiO2 hybrid materials were prepared by the sol–gel route using 3-trimethoxy-silyl-propyl-methacrylate (TMSPM) as the coupling agent between the organic and inorganic phases. Several Eu3+-doped hybrid samples were prepared at different coupling agent concentrations and analyzed through their luminescence spectra using the Eu3+ ion as a spectroscopic probe. The excitation spectra of the hybrid solutions display a broad band attributed to the charge transfer transition between the europium ions and the hybrid matrix, with intensity increasing as the TMSPM concentration decreases. The TMSPM concentration effect on the emission spectra of the Eu3+-doped PMMA-SiO2 hybrid materials was analyzed by the R asymmetry parameter calculation. The results showed that the R value also increases as the TMSPM concentration decreases, yielding a linear relationship between the charge transfer band intensity and the R parameter. This was interpreted as a symmetry reduction in the local environment around the Eu3+ ions, which have stronger interaction with the polymethylmethacrylate (PMMA) phase.

Highlights

  • Eu3+ ions incorporation in PMMA-SiO2 hybrids to evaluate the local structure varying TMSPM concentration.

  • Eu3+ photoluminescent properties gave information about local environment structure, sensing local morphological changes.

  • Lower concentration of TMSPM produce greater local distortion around the ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

For manuscripts that are a report of a study, MLM-R confirms that this work is an accurate representation of the experimental results. The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Almaral-Sánchez JL, Rubio E, Mendoza-Galván A, Ramírez-Bon R (2005) Red colored transparent PMMA-SiO2 hybrid films. J Phys Chem Solids 66(10):1660–1667

    Article  Google Scholar 

  2. Varela-Caselis JL, Rubio-Rosas E, Cataño-Meneses VM (2012) Hybrid PMMA-silica anticorrosive coatings for stainless steel 316L. Corros Eng Sci Technol 47(2):131–137

    Article  Google Scholar 

  3. Yeh JM, Weng CJ, Liao WJ, Mau YW (2006) Anticorrosively enhanced PMMA-SiO2 hybrid coatings prepared from the sol-gel approach with MSMA as the coupling agent. Surf Coat Technol 201:1788–1795

    Article  CAS  Google Scholar 

  4. Alvarado-Beltrán CG, Almaral-Sánchez JL (2015) Dielectric gate applications of PMMA-TiO2 hybrid films in ZnO-based thin film transistors. Int J Electrochem Sci 10(5):4068–4082

    Google Scholar 

  5. Sun J, Akdogan EK, Klein LC, Safari A (2007) Characterization and optical properties of sol-gel processed PMMA/SiO2 hybrid monoliths. J Non Cryst Solids 353(29):2807–2812

    Article  CAS  Google Scholar 

  6. Yoshida M, Prasad PN (1996) Sol-gel-processed SiO2/TiO2/poly(vinylpyrrolidone) composite materials for optical waveguides. Chem Mater 8(1):235–241

    Article  CAS  Google Scholar 

  7. Ma H, Jen AKY, Dalton LR (2002) Polymer-based optical waveguides: Materials, processing, and devices. Adv Mater 14(19):1339–1365

    Article  CAS  Google Scholar 

  8. Philipp G, Schmidt H (1984) New materials for contact lenses prepared from Si- and Ti-alkoxides by the sol-gel process. J Non Cryst Solids 63:283–292

    Article  CAS  Google Scholar 

  9. Nishio K, Tsuchiya T (2001) Organic-inorganic hybrid ionic conductor prepared by sol-gel process. Sol Energy Mater Sol Cells 68:295–306

    Article  CAS  Google Scholar 

  10. Morales-acosta MD, Quevedo-lópez MA, Ramírez-bon R (2014) PMMA-SiO2 hybrid films as gate dielectric for ZnO based thin-film transistors. Mater Chem Phys 146:380–388

    Article  CAS  Google Scholar 

  11. Harb SV, Bassous NJ, de Souza TAC, Trentin A, Pulcinelli SH, Santilli CV, Wester TJ, Lobo AO, Hammer P (2020) Hydroxyapatite and β-TCP modified PMMA-TiO2 and PMMA-ZrO2 coatings for bioactive corrosion protection of Ti6Al4V implants. Mater Sci Eng C 116:111149

    Article  CAS  Google Scholar 

  12. De Urquijo-ventura MS, Rao MGS, Meraz-davila S, Ochoa JAT, Quevedo-lopez A, Ramirez-bon R (2020) PVP-SiO2 and PVP-TiO2 hybrid films for dielectric gate applications in CdS-based thin film transistors. Polymer 191:122261

    Article  Google Scholar 

  13. Šimon P, Zhong W, Bakoš D, Hynek D (2008) Thermooxidative stability of polymethyl methacrylate containing nanoparticles of silica/titania and silica/zirconia. Chem Pap 62(2):176–180

    Article  Google Scholar 

  14. Du W, Wang H, Zhong W, Shen L, Du Q (2005) High refractive index films prepared from titanium chloride and methyl methacrylate via a non-aqueous sol-gel route. J Sol-Gel Sci Technol 34(3):227–231

    Article  CAS  Google Scholar 

  15. Kuan H-C, Chiu S-L, Chen C-H, Kuan C-F, Chiang C-L (2009) Synthesis, characterization, and thermal stability of PMMA/SiO2/TiO2 tertiary nanocomposites via non-hydrolytic sol–gel method. J Appl Polym Sci 113:1959–1965

    Article  CAS  Google Scholar 

  16. Pandey S, Mishra SB (2011) Sol-gel derived organic-inorganic hybrid materials: synthesis, characterizations and applications. J Sol-Gel Sci Technol 59(1):73–94

    Article  CAS  Google Scholar 

  17. Alvarado-Rivera J, Muñoz-Saldaña J, Ramírez-Bon R (2010) Nanoindentation testing of SiO2-PMMA hybrid films on acrylic substrates with variable coupling agent content. J Sol-Gel Sci Technol 54(3):312–318

    Article  CAS  Google Scholar 

  18. Morales-Acosta MD, Quevedo-López MA, Gnade BE, Ramírez-Bon R (2011) PMMA-SiO2 organic-inorganic hybrid films: determination of dielectric characteristics. J Sol-Gel Sci Technol 58(1):218–224

    Article  CAS  Google Scholar 

  19. Miyata K (2014) Highly luminescent lanthanide complexes with specific coordination structures, 1st edn. Springer Theses, Japan

  20. Cotton S (2008) Lanthanide and actinide chemistry. John Wiley & Sons, Ltd, England

  21. de Bettencourt-Dias A (2014) Luminescence of lanthanide ions, 1st edn. John Wiley and Sons, Ltd, United Kingdom

  22. Kolesnikov IE, Povolotskiy AV, Mamonova DV, Kolesnokov EY, Kurochkin AV, Lähderanta E, Mikhailov MD (2017) Asymmetry ratio as a parameter of Eu3+ local environment in phosphors. J Rare Earths 36(5):474–481

    Article  Google Scholar 

  23. Yan B, Qiao XF (2007) Rare-earth/inorganic/organic polymeric hybrid materials: molecular assembly, regular microstructure and photoluminescence. J Phys Chem B 111(43):12362–12374

    Article  CAS  Google Scholar 

  24. Yan B, Wang C, Guo L, Liu JL (2010) Photophysical properties of Eu(III) center covalently immobilized in Si-O-B and Si-O-Ti composite gels. Photochem Photobiol 86(3):499–506

    Article  CAS  Google Scholar 

  25. De Jesus FA, Santos STS, Caiut JMA, Sarmento VHV (2016) Effects of thermal treatment on the structure and luminescent properties of Eu3+ doped SiO2-PMMA hybrid nanocomposites prepared by a sol-gel process. J Lumin 170:588–593

    Article  Google Scholar 

  26. Li Y, Wang X, Chian W, Wang JL, Chang P, Liu D, Jin Z, Li X (2012) New Luminescent mesoporous material covalent bonded with europium (III) organic/inorganic/polymeric hybrid. Adv Mater Res 535–537:1374–1377

    Article  Google Scholar 

  27. Li Q, Li T, Wu J (2001) Luminescence of europium(III) and terbium(III) complexes incorporated in poly(vinyl pyrrolidone) matrix. J Phys Chem B 105(49):12293–12296

    Article  CAS  Google Scholar 

  28. Mbakaan C, Ahemen I, Onojah AD, Amah AN, Tshabalala KG, Dejene FB (2020) Luminescent properties of Eu3+-doped silica nanophosphors derived from rice husk. Opt Mater 108:110168

  29. Arunkumar S, Krishnaiah KV, Marimuthu K (2013) Structural and luminescence behavior of lead fluoroborate glasses containing Eu3+ ions. Phys B Phys Condens Matter 416:88–100

    Article  CAS  Google Scholar 

  30. Melgoza-Ramírez ML, Ramírez-Bon R (2020) Microstructural comparison between PMMA-SiO2 and PMMA-TiO2 hybrids systems using Eu3+ as ion-probe luminescence. J Non Cryst Solids 544:120167

    Article  Google Scholar 

  31. Morales-Acosta MD, Alvarado-Beltrán CG, Quevedo-López MA, Gnade BE, Mendoza-Galván A, Ramírez-Bon R (2013) Adjustable structural, optical and dielectric characteristics in sol-gel PMMA-SiO2 hybrid films. J Non Cryst Solids 362(1):124–135

    Article  CAS  Google Scholar 

  32. Mohan K, Dolui S, Nath BC, Bora A, Sharma S, Dolui SK (2017) A highly stable and efficient quasi solid state dye sensitized solar cell based on Polymethyl methacrylate (PMMA)/Carbon black (CB) polymer gel electrolyte with improved open circuit voltage. Electrochim Acta 247:216–228

    Article  CAS  Google Scholar 

  33. Lima-Gutiérrez J, Palomino-Merino R, Carrasco-Arroyo ML, Rubio-Rosas E, Castaño VM (2013) Nonlinear optical properties of a MMA-silica nanohybrid material doped with rhodamine 6G. J Nanomater 2013:374185

  34. Guo L, Yan B (2011) Photoluminescent rare earth inorganic-organic hybrid systems with different metallic alkoxide components through 2-pyrazinecarboxylate linkage. J Photochem Photobiol A Chem 224(1):141–146

    Article  CAS  Google Scholar 

  35. Liu JL, Yan B (2008) Lanthanide (Eu3+, Tb3+) centered hybrid materials using modified functional bridge chemical bonded with silica: Molecular design, physical characterization, and photophysical properties. J Phys Chem B 112(35):10898–10907

    Article  CAS  Google Scholar 

  36. Yan B (2012) Recent progress in photofunctional lanthanide hybrid materials. RSC Adv 2(25):9304–9324

    Article  CAS  Google Scholar 

  37. Blasse G (1976) The influence of charge-transfer and Rydberg states on the luminescence properties of lanthanides and actinides. In: Spectra and Chemical Interactions. Structure and Bonding. Springer, Berlin, Heidelberg. 26:43–79

  38. Blasse G (1972) The ultraviolet absorption bands of Bi3+ and Eu3+ in oxides. J solid state Chem 4:52–54

    Article  CAS  Google Scholar 

  39. Li HR, Zhang HJ, Fu LS, Meng QG, Wang SB (2002) Preparation and luminescence properties of hybrid materials containing lanthanide complexes covalently bonded to a terpyridine-functionalized silica matrix. Chem Mater 14(9):3651–3655

    Article  CAS  Google Scholar 

  40. Li Y, Ge X, Pang X, Yu X, Zhen X, Geng L, Wang Y (2015) Molecular assembly and luminescent properties of europium polymeric hybrid material based on Si-O-Ti hosts. Mater Lett 152:170–172

    Article  CAS  Google Scholar 

  41. Yu L, Nogami M (2007) Local structure and photoluminescent characteristics of Eu3+ in ZnO-SiO2 glasses. J Sol-Gel Sci Technol 43(3):355–360

    Article  CAS  Google Scholar 

  42. Quang B, Ngoc T, Ngoc N, Van Do P (2017) Microscopic and optical parameters of Eu3+-doped SnO2–SiO2 nanocomposites prepared by sol−gel method. J Lumin 201(2018):129–134

    Google Scholar 

  43. You H, Nogami M (2004) Optical properties and local structure of Eu3+ ions in sol-gel TiO2-SiO2 glasses. J Phys Chem B 108(32):12003–12008

    Article  CAS  Google Scholar 

  44. Janulevicius M, Marmokas P, Misevicius M, Grigorjevaite J, Mikoliunaite L, Sakirzanovas S, Katelnikovas A (2016) Luminescence and luminescence quenching of highly efficient Y2Mo4O15:Eu3+ phosphors and ceramics. Sci Rep 6:1–12

    Article  Google Scholar 

  45. De Jesus FA, Santana BV, Caiut JMA, Sarmento VHV (2018) Local coordination, influence on synthesis and luminescent features of Eu3+ ions in SiO2-Poly(methyl methacrylate) hybrid materials. Ind Eng Chem Res 57(11):3941–3949

    Article  Google Scholar 

  46. Binnemans K (2015) Interpretation of europium(III) spectra. Coord Chem Rev 295:1–45

    Article  CAS  Google Scholar 

  47. Jiao B, Li M, Zhang X, Wang X (2013) Preparation and research on luminescent properties of eu-doped TiO2-ZnO composite powders. Adv Mater Res 652–654:622–627

    Article  Google Scholar 

  48. de Santana RC, Fuentealba PA, Maia LJQ, Paredes-García V, Aravena D, Venegas-Yazigi D, Manzur J, Spodine E(2018) Solid state photoluminescence studies of [EuLnH2(NO3)3](H2O)x macrocyclic complexes with Schiff base ligands J Lumin 203(3):7–15

    Article  Google Scholar 

  49. Sheng K, Yan B (2009) Coordination bonding assembly and photophysical properties of Europium organic/inorganic/polymeric hybrid materials. J Photochem Photobiol A Chem 206:140–147

    Article  CAS  Google Scholar 

  50. Secu CE, Predoi D, Secu M, Cernea M, Aldica G (2009) Structural investigations of sol–gel derived silicate gels using Eu3+ ion-probe luminescence. Opt Mater 31(11):1745–1748

    Article  CAS  Google Scholar 

  51. Driesen K, Driesen K, Nockemann P, Görller-Walrand C, Binnemans K, Bellayer S, Bideau JL, Vioux A (2006) Luminescent ionogels based on europium-doped ionic liquids confined within silica-derived networks. Chem Mater 18(24):5711–5715

    Article  Google Scholar 

  52. Tanner PA (2013) Some misconceptions concerning the electronic spectra of tri-positive europium and cerium. Chem Soc Rev 42(12):5090–5101

    Article  CAS  Google Scholar 

  53. Chaussedent MFS, Monteil A (1997) Molecular dynamics simulation of Eu3+ in aqueous solution: comparison with experimental luminescence spectra. J Lumin 72:567–569

    Article  Google Scholar 

  54. Yang C, Luo J, Ma J, Zhu D, Miao L, Zhang Y, Liang L, Lu M (2012) Luminescent properties and CH3COO- recognition of europium complexes with different phenanthroline derivatives as second ligands. Synth Met 162:1097–1106

    Article  CAS  Google Scholar 

  55. Guo X, Guo H, Fu L, Zhanga H, Carlos LD, Denga R, Yu J (2008) Synthesis and photophysical properties of novel organic-inorganic hybrid materials covalently linked to a europium complex. J Photochem Photobiol A Chem 200:318–324

    Article  CAS  Google Scholar 

  56. Carlos LD, Ferreira RAS, De Zea Bermudez V, Ribeiro SJL (2009) Lanthanide-containing light-emitting organic-inorganic hybrids: a bet on the future. Adv Mater 21(5):509–534

    Article  CAS  Google Scholar 

  57. Yan B, Wang Q-M (2008) Two luminescent molecular hybrids composed of bridged Eu(III)-B-Diketone chelates covalently trapped in silica and titanate gels. Cryst Growth Des 8(5):1484–1489

    Article  CAS  Google Scholar 

  58. Yan B, Lu HF (2008) Lanthanide-centered covalently bonded hybrids through sulfide linkage: molecular assembly, physical characterization, and photoluminescence. Inorg Chem 47(13):5601–5611

    Article  CAS  Google Scholar 

  59. Julián B, Planelles J, Cordoncillo E, Escribano P, Aschehoug P, Sanchez C, Viana B, Pellé F (2006) Eu3+-doped CdS nanocrystals in SiO2 matrices: one-pot sol-gel synthesis and optical characterization. J Mater Chem 16(47):4612–4618

    Article  Google Scholar 

  60. Lima PP, Sá Ferreira RA, Freire RO, Almeida Paz FA, Fu L, Alves Jr S, Carlos LD, Malta OL (2006) Spectroscopic study of a UV-photostable organic-inorganic hybrids incorporating an Eu3+ β-diketonate complex. Chem Phys Chem 7(3):735–746

    Article  CAS  Google Scholar 

  61. Peacock RD (1974) The intensities of lanthanide f ↔ f transitions. In: Rare Earths. Structure and Bonding. Springer, Berlin, Heidelberg. 22:83–122

  62. Chang M, Song Y, Chen J, Cui L, Shi Z, Sheng Y, Zou H (2018) Photocatalytic and photoluminescence properties of core-shell SiO2@TiO2:Eu3+, Sm3+ and its etching products. ACS Sustain Chem Eng 6(1):223–236

    Article  CAS  Google Scholar 

  63. Beltaif M, Dammak M, Megdiche M, Guidara K (2016) Synthesis, optical spectroscopy and Judd-Ofelt analysis of Eu3+doped Li2BaP2O7 phosphors. J Lumin 177:373–379

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by CONACYT. The authors acknowledge C. A. Ávila Herrera, M. T. Rivelino Flores Farías, R. A. Mauricio Sánchez, Ing. J. E. Urbina and Adair Jimenez Nieto for their helpful technical assistance.

Author contributions

All authors contributed to the study conception and design. Material preparation, data collection, and investigation were performed by MLM-R and RR-B. The first draft of the manuscript was written by MLM-R and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding

MLM-R certifies that all financial and material support for the conduct of this study and/or preparation of this manuscript has been supported by CONACYT resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Melgoza-Ramírez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melgoza-Ramírez, M.L., Ramírez-Bon, R. Europium ions as a spectroscopic probe in the study of PMMA-SiO2 hybrid microstructure with variable coupling agent. J Sol-Gel Sci Technol 107, 46–56 (2023). https://doi.org/10.1007/s10971-021-05582-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05582-2

Keywords

Navigation