Skip to main content
Log in

Characterization and catalytic reactivity of xerogel catalysts based on mesoporous zirconia doped with telluric acid prepared by sol–gel method: mechanistic study of acetic acid esterification with benzyl alcohol

  • Original Paper: Sol–gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Our work is focused on the research of new zirconia doped telluric acid catalysts prepared with sol–gel method. Optimization of different preparation parameters of the catalyst, such as the HNO3 assisted synthesis, molar ratio nTe(OH)6/nZr, and calcination temperature, was studied. Catalysts were characterized by N2-physisorption at 77 K, X-ray diffraction, UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), Electron Scanning Microscopy, and surface acidity titration. The catalytic activity was tested in the esterification reaction of benzyl alcohol with acetic acid. The addition of HNO3 in the gelling step greatly improves the acidity of the catalyst through the development of the texture. Doping of zirconia by telluric acid improves the acidity of the catalyst and the catalytic performance, but this improvement does not follow the increase in the quantity of the doping agent in the catalyst. However, calcination of the catalyst allows the development of tetragonal ZrO2 phase and causes a loss in acidity and consequently a decrease in catalytic activity. Kinetics and mechanism study indicates that the catalytic reaction is of first order and is by the Eley–Rideal mechanism in which the adsorbed acetic acid species react with benzyl alcohol in the fluid phase to form the corresponding ester. By the application of Eyring’s theory shows that the adsorption step is endothermic and that a fast associative mechanism occurs between the adsorbed species and the second reagent.

The correlation between catalytic activity, surface acidity and catalysts morphology.

Highlights

  • Preparation of new telluric acid doped zirconia by sol–gel process with nitric acid allows the development of new ZrTe phase.

  • The addition of nitric acid in the gelling step has a great effect on the textural, morphology and acidity properties of catalysts. Consequently, their reactivity is improved.

  • Kinetic studies have shown that esterification of benzyl alcohol with acetic acid follows an Eley–Rideal mechanism with a first order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Moser BR (2011) Biodiesel production, properties, and feedstocks. Biofuels 285–347

  2. Yadav GD, Mehta PH (1994) Heterogeneous catalysis in esterification reactions: preparation of phenethyl acetate and cyclohexyl acetate by using a variety of solid acidic catalysts. Ind Eng Chem Res 33:2198–2208

    Article  CAS  Google Scholar 

  3. Sharma YC, Singh B, Upadhyay SN (2008) Advancements in development and characterization of biodiesel: a review. Fuel 87:2355–2373

    Article  CAS  Google Scholar 

  4. Zaidi A, Gainer JL, Carta G (1995) Fatty acid esterification using nylon‐immobilized lipase. Biotechnol Bioeng 48:601–605

    Article  CAS  Google Scholar 

  5. Weissermel K, Arpe H-J (2008) Industrial Organic Chemistry. John Wiley & Sons, Frankfurt, Federal Republic of Germany.

  6. Alvarez M, Ortiz MJ, Ropero JL, Niño ME, Rayon R, Tzompantzi F, Gomez R (2009) Evaluation of sulfated aluminas synthesized via the sol-gel method in the esterification of oleic acid with ethanol. Chem Eng Commun 196:1152–1162

    Article  CAS  Google Scholar 

  7. Corma A, Garcia H, Iborra S, Primo J (1989) Modified faujasite zeolites as catalysts in organic reactions: esterification of carboxylic acids in the presence of HY zeolites. J Catal 120:78–87

    Article  CAS  Google Scholar 

  8. Nsir SB, Younes MK, Rives A, Ghorbel A (2017) Characterization and reactivity of zirconia-doped phosphate ion catalyst prepared by sol–gel route and mechanistic study of acetic acid esterification by ethanol. J Sol-Gel Sci Technol 84:349–360

    Article  Google Scholar 

  9. Parida KM, Pattnayak PK (1996) Studies on PO3− 4/ZrO2: I. effect of H3PO4on textural and acidic properties of ZrO2. J Colloid Interface Sci 182:381–387

    Article  CAS  Google Scholar 

  10. Hammache S, Goodwin Jr JG (2003) Characteristics of the active sites on sulfated zirconia for N-butane isomerization. J Catal 218:258–266

    Article  CAS  Google Scholar 

  11. Garcia CM, Teixeira S, Marciniuk LL, Schuchardt U (2008) Transesterification of soybean oil catalyzed by sulfated zirconia. Bioresour Technol 99:6608–6613

    Article  CAS  Google Scholar 

  12. Ikeda Y, Asadullah M, Fujimoto K, Tomishige K (2001) Structure of the active sites on H3PO4/ZrO2 catalysts for dimethyl carbonate synthesis from methanol and carbon dioxide. J Phys Chem B 105:10653–10658

    Article  CAS  Google Scholar 

  13. Mejri I, Younes MK, Ghorbel A, Eloy P, Gaigneaux EM (2006) Comparative study of the sulfur loss in the xerogel and aerogel sulfated zirconia calcined at different temperatures: effect on n-hexane isomerization. In: Studies in surface science and catalysis, vol. 162 Elsevier, 953–960 ISBN 0167-2991

  14. Hamouda LB, Ghorbel A (2000) Control preparation of sulfated zirconia by sol-gel process: impact on catalytic performances during n-Hexane isomerization. J Sol-Gel Sci Technol 19:413–416

    Article  Google Scholar 

  15. Chuah GK, Liu SH, Jaenicke S, Harrison LJ (2001) Cyclisation of citronellal to isopulegol catalysed by hydrous zirconia and other solid acids. J Catal 200:352–359

    Article  CAS  Google Scholar 

  16. Kamoun N, Younes MK, Ghorbel A, Mamede AS, Rives A (2014) Effect the solvent evacuation mode on the catalytic properties of nickel-modified sulfated zirconia catalysts: N-hexane isomerization. React Kinet Mech Catal 111:199–213

    Article  CAS  Google Scholar 

  17. Raissi S, Kamoun N, Younes MK, Ghorbel A (2015) Effect of drying conditions on the textural, structural and catalytic properties of Cr/ZrO 2–SO 4: N-Hexane conversion. React Kinet Mech Catal 115:499–512

    Article  CAS  Google Scholar 

  18. Liquid-Phase Esterification of Propionic Acid with n-Butanol | Industrial & Engineering Chemistry Research. Accessed 4 Dec 2020. https://pubs.acs.org/doi/abs/10.1021/ie001059h

  19. Bart HJ, Kaltenbrunner W, Landschützer H (1996) Kinetics of esterification of acetic acid with propyl alcohol by heterogeneous catalysis. Int J Chem Kinet 28:649–656. https://doi.org/10.1002/(SICI)1097-4601(1996)28:9<649::AID-KIN2>3.0.CO;2-V

  20. Derouane EG (1998) Zeolites as solid solvents1paper presented at the international symposium ‘organic chemistry and catalysis’ on the occasion of the 65th birthday of Prof. H. van Bekkum, Delft, Netherlands, 2–3 October 1997.1. J Mol Catal Chem 134:29–45. https://doi.org/10.1016/S1381-1169(98)00021-1

    Article  CAS  Google Scholar 

  21. Derouane EG, Crehan G, Dillon CJ, Bethell D, He H, Derouane-Abd Hamid SB (2000) Zeolite catalysts as solid solvents in fine chemicals synthesis: 2. competitive adsorption of the reactants and products in the Friedel–Crafts acetylations of anisole and toluene. J Catal 194:410–423. https://doi.org/10.1006/jcat.2000.2933

    Article  CAS  Google Scholar 

  22. Villabrille P, Vázquez P, Blanco M, Cáceres C (2002) Equilibrium adsorption of molybdosilicic acid solutions on carbon and silica: basic studies for the preparation of ecofriendly acidic catalysts. J Colloid Interface Sci 251:151–159. https://doi.org/10.1006/jcis.2002.8391

    Article  CAS  Google Scholar 

  23. El-Sharkawy EA, Khder AS, Ahmed AI (2007) Structural characterization and catalytic activity of molybdenum oxide supported zirconia catalysts. Microporous Mesoporous Mater 102:128–137. https://doi.org/10.1016/j.micromeso.2006.12.037

    Article  CAS  Google Scholar 

  24. Khder AS, Ahmed AI (2009) Selective nitration of phenol over nanosized tungsten oxide supported on sulfated SnO2 as a solid acid catalyst. Appl Catal Gen 354:153–160. https://doi.org/10.1016/j.apcata.2008.11.030

    Article  CAS  Google Scholar 

  25. Sing K (1982) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 54:2201–2218. https://doi.org/10.1351/pac198254112201

    Article  Google Scholar 

  26. Zhou B, Shen J, Wu Y, Wu G, Ni X (2007) Hydrophobic silica aerogels derived from polyethoxydisiloxane and perfluoroalkylsilane. Mater Sci Eng C 27:1291–1294. https://doi.org/10.1016/j.msec.2006.06.032

    Article  CAS  Google Scholar 

  27. Moner-Girona M, Roig A, Molins E, Llibre J (2003) Sol-gel route to direct formation of silica aerogel microparticles using supercritical solvents. J Sol-Gel Sci Technol 26:645–649. https://doi.org/10.1023/A:1020748727348

    Article  CAS  Google Scholar 

  28. Mezza P, Phalippou J, Sempere R (1999) Sol–gel derived porous silica films. J Non-Cryst Solids 243:75–79. https://doi.org/10.1016/S0022-3093(98)00825-4

    Article  CAS  Google Scholar 

  29. Pattnayak PK, Parida KM (2000) Studies on PO43−/ZrO2: II. Effect of phosphate concentration and activation temperature on the catalytic properties of zirconia. J Colloid Interface Sci 226:340–345. https://doi.org/10.1006/jcis.2000.6822

    Article  CAS  Google Scholar 

  30. Rodrı́guez-Castellón E, Jiménez-López A, Maireles-Torres P, Jones DJ, Rozière J, Trombetta M, Busca G, Lenarda M, Storaro L (2003) Textural and structural properties and surface acidity characterization of mesoporous silica-zirconia molecular sieves. J Solid State Chem 175:159–169. https://doi.org/10.1016/S0022-4596(03)00218-4

    Article  CAS  Google Scholar 

  31. López EF, Escribano VS, Panizza M, Carnasciali MM, Busca G (2001) Vibrational and electronic spectroscopic properties of zirconia powders. J Mater Chem 11:1891–1897. https://doi.org/10.1039/B100909P

    Article  Google Scholar 

  32. (PDF) Synthesis and Apparent Bandgap of Nanophase Zirconia. Accessed on 4 Dec 2020. https://www.researchgate.net/publication/227120465_Synthesis_and_Apparent_Bandgap_of_Nanophase_Zirconia

  33. Rauta PR, Manivasakan P, Venkatachalam R, Sahu BB, Panda B, Mohapatra P (2012) Phase transformation of ZrO2 nanoparticles produced from zircon. Phase Transit 85:13–26. https://doi.org/10.1080/01411594.2011.619698

    Article  CAS  Google Scholar 

  34. Sert E, Atalay F (2009) Kinetic study of the esterification of acetic acid with butanol catalyzed by sulfated zirconia. React Kinet Mech Catal 99:125–134. https://doi.org/10.1007/s11144-009-0117-y

    Article  CAS  Google Scholar 

  35. Altass HM, Khder AERS (2016) Surface and catalytic properties of triflic acid supported zirconia: effect of zirconia tetragonal phase. J Mol Catal Chem 411:138–145. https://doi.org/10.1016/j.molcata.2015.10.022

    Article  CAS  Google Scholar 

  36. Chakhari S, Younes MK, Rives A, Ghorbel A (2015) Effect of the doping agent nature on the characteristic and catalytic properties of aerogel zirconia catalysts doped with sulfate groups or heteropolytungstic acid. Mater Res Bull 72:35–42. https://doi.org/10.1016/j.materresbull.2015.07.012

    Article  CAS  Google Scholar 

  37. Raissi S, Younes MK, Ghorbel A, Garin F (2010) Effect of sulphate groups on catalytic properties of chromium supported by zirconia in the N-hexane aromatization. J Sol-Gel Sci Technol 53:412–417

    Article  CAS  Google Scholar 

  38. Kamoun N, Younes MK, Ghorbel A, Mamede A-S, Rives A (2015) Comparative study of aerogels nanostructured catalysts: Ni/ZrO 2–SO 4 2− and Ni/ZrO 2–Al 2 O 3–SO 4 2−. Ionics 21:221–229

    Article  CAS  Google Scholar 

  39. Dong Y, Qi L, Li J, Chen I-W (2017) A computational study of yttria-stabilized zirconia: II. Cation diffusion. Acta Mater 126:438–450. https://doi.org/10.1016/j.actamat.2017.01.008

    Article  CAS  Google Scholar 

  40. Crist BV (1999) Handbook of the Elements and Native Oxides. XPS Int. Inc, Iowa USA

    Google Scholar 

  41. Chen X, Yang Q, Chu B, An H, Cheng Y (2015) Valence variation of phase-pure M1 MoVNbTe oxide by plasma treatment for improved catalytic performance in oxidative dehydrogenation of ethane. RSC Adv 5:91295–91301

    Article  CAS  Google Scholar 

  42. Chowdari BVR, Pramoda Kumari P (1996) Thermal, electrical and XPS studies of Ag2O·TeO2·P2O5 glasses. J Non-Cryst Solids 197:31–40. https://doi.org/10.1016/0022-3093(95)00548-X

    Article  CAS  Google Scholar 

  43. Tesfaye F, Sukhomlinov D, Lindberg D, Taskinen P, Akdogan G (2017) Thermal stabilities and properties of equilibrium phases in the Pt-Te-O system. J Chem Thermodyn 106:47–58. https://doi.org/10.1016/j.jct.2016.11.016

    Article  CAS  Google Scholar 

  44. Mendes MK, Martinez E, Marty A, Veillerot M, Yamashita Y, Gassilloud R, Bernard M, Renault O, Barrett N (2018) Forming mechanism of Te-based conductive-bridge memories. Appl Surf Sci 432:34–40

    Article  CAS  Google Scholar 

  45. Rafiee E, Joshaghani M, Abadi PG-S (2019) Synthesis and characterization of carbon@ HPW core/shell nanorod using potato as a novel precursor: efficient catalyst for CN coupling reaction. Arab J Chem 12:3324–3335

    Article  CAS  Google Scholar 

  46. Tanabe K, Misono M, Hattori H, Ono Y (1990) New solid acids and bases: their catalytic properties. Elsevier, Amsterdam-Oxford-New York-Tokyo

  47. Kirumakki SR, Nagaraju N, Narayanan S (2004) A comparative esterification of benzyl alcohol with acetic acid over zeolites Hβ, HY and HZSM5. Appl Catal Gen 273:1–9

    Article  CAS  Google Scholar 

  48. Liu W, Yin P, Zhang J, Tang Q, Qu R (2014) Biodiesel production from esterification of free fatty acid over PA/NaY solid catalyst. Energy Convers Manag 82:83–91

    Article  CAS  Google Scholar 

  49. Song C, Qi Y, Deng T, Hou X, Qin Z (2010) Kinetic model for the esterification of oleic acid catalyzed by zinc acetate in subcritical methanol. Renew Energy 35:625–628

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Chevreul Institute (FR 2638), Ministère de l’Enseignement Supérieur et de la Recherche, Région Nord-Pas de Calais and FEDER are acknowledged for supporting and funding partially this work. Pardis SIMON is acknowledged for performing the X photoelectron spectrometry experiments of the catalysts.

Funding

University of Lille and University of Tunis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wafa Ksila.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ksila, W., Younes, M.K., Ghorbel, A. et al. Characterization and catalytic reactivity of xerogel catalysts based on mesoporous zirconia doped with telluric acid prepared by sol–gel method: mechanistic study of acetic acid esterification with benzyl alcohol. J Sol-Gel Sci Technol 99, 376–390 (2021). https://doi.org/10.1007/s10971-021-05580-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05580-4

Keywords

Navigation