Skip to main content

Advertisement

Log in

Interaction between Pseudomonas fluorescens, Arbuscular mycorrhizae and iron chelates and their potential for controlling Rhizoctonia solani on potato

  • Original Article
  • Published:
Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

In the current experiment, the impact of two strains of Pseudomonas fluorescens (VUPf5, and F140) along with two species of Arbuscular mycorrhizae, Funneliformis mosseae (Glomus mosseae) and Rhizophagus intraradices (Glomus intraradices) as well as two types of chemical iron chelators (EDTA and EDDHA) were tested individually and in combination against Rhizoctonia solani AG3, causing black scurf and canker of potato, under in vivo conditions. This research revealed the positive effect of all treatments in reducing pathogenic effects of R. solani compared to untreated inoculated plants. In this vein, the highest reduction in disease severity (100%) was found in plants treated with VUPf5 alone and in multifarious combinations, F140 + F.m + EDTA, and F140 + R.in + EDDHA. Furthermore, all treatments had a positive effect in decreasing the harmful effects of R. solani in all growth parameters (e.g., fresh and dry weights of shoots, length, and diameter of the stem). The evaluation of these treatments on the rate of chlorophyll and carotenoid showed that VUPf5 + F.m + EDDHA significantly increased the amount of chlorophyll and carotenoids compared to control. Moreover, R. solani AG3 in the presence of most biocontrol agents has little effect on zinc and iron concentration. The Maximum concentration of iron and zinc was observed in plants treated with F140 + R.in and VUPf5 + F.m + EDTA, respectively. Therefore, by using a combination of bio-agent factors, this study highlights the remarkably increased biological control's efficacy in comparison to using each of them individually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Akhtar MS, Siddiqui ZA (2008) Glomus intraradices, Pseudomonas alcaligenes, and Bacillus pumulis: effective agent for the control of root-rot disease complex of chickpea (Cicer arietinum L). J Gen Plant Pathol 74(1):53–60

    Article  Google Scholar 

  • Alejandro P, Stefani T, Irene J, David P, Jurriaan T, Duncan DC (2017) The interactive effects of arbuscular mycorrhizae and plant growth-promoting rhizobacteria synergistically enhance host plant defense against pathogens. Sci Rep 7(1):1–10

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Artursson V, Finlay D, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Baradar A, Saberi-Riseh R, Sedaghati E, Akhgar A (2015) Effect of some bacteria and iron chelators on colonization by arbuscular mycorrhizal fungi inoculated by Rhizoctonia. Indian J Sci Technol 8(19):1–5

    Article  CAS  Google Scholar 

  • Barea JM, Andrade G, Bianciotto V, Dowling D, Lohrkes B (1998) Impact on arbuscular mycorrhizae formation of pseudomonas strains used as inoculants for the biocontrol of soil-born fungal plant pathogen. Appl Environ Microbiol 64:2304–2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandy BP, Leach SS, Tavantzis SM (1988) Anastomosis Group 3 Is the Major Cause of Rhizoctonia Disease of Potato in Maine. Plant Disease 72 (7):596

  • Berta G, Copetta A, Gamalero E, Bona E, Cesaro P, Scarafoni A, D'Agostino G (2014) Maize development and grain quality are differentially affected by mycorrhizal fungi and growth promoting pseudomonas in the field. Mycorrhiza 24(3):161–170

    Article  Google Scholar 

  • Brewer MT, Larkin RP (2005) Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Prot 24(11):939–950

    Article  Google Scholar 

  • B.M Chapman, D.R Jones, R.F Jung, (1983) Processes controlling metal ion attenuation in acid mine drainage streams. Geochimica et Cosmochimica Acta 47 (11):1957-1973

    Article  CAS  Google Scholar 

  • Carling DE, Leiner RH (1990) Effect of temperature on virulence of Rhizoctonia solani and other Rhizoctonia on potato. Phytopathol 80:930–934

    Article  Google Scholar 

  • Chandanie WA, Kubota M, Hyakumachi M (2009) Interaction between the arbuscular mycorrhizae fungus Glomus mosseae and plant growth-promoting fungi and their significance for enhancing plant growth and suppressing damping-off of cucumber (Cucumis sativus L.). Appl Soil Ecol 41:336–341

    Article  Google Scholar 

  • D’Alessandro M, Erb M, Ton J, Brandenberg A, Karlen D, Zopfi J, Turling TCJ (2013) Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ 37:813–826

    Article  PubMed  PubMed Central  Google Scholar 

  • Datnoff LE, Nemec A, Pernezny K (1995) Biological control of fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biol Control 5:427–431

    Article  Google Scholar 

  • Dehn B, Dehn HW (1986) Development of VA mycorrhizal fungi and interaction with Cochliobolus sativus in root of Gramineae. Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 773–779

    Google Scholar 

  • Desia A, Archana G (2011) Role of siderophores in crop improvement. In: Maheshwari DK (ed) bacteria in agrobiology: plant nutrient management. Springer, Berlin, pp 109–139

    Chapter  Google Scholar 

  • Duc NH, Mayer Z, Pek Z, Helyes L, Posta K (2017) Combined inoculation of arbuscular mycorrhizae, Pseudomonas fluorescens and Trichoderma spp. for enhancing defense enzymes and yield of three pepper cultivars. Appl Ecol Environ Res 15(3):1815–1829

    Article  Google Scholar 

  • Frank JA, Leach SS (1980) Comparison of tuber-borne and soil-borne inoculum in the Rhizoctonia disease of potato. Phytopathol 70:51–53

    Article  Google Scholar 

  • Ellis RJ, Timms-Wilson TM, Bailey MJ (2000) Identification of conserved traits in fluorescent pseudomonads with antifungal activity. J Appl Environ Microbiol 2:274–284

    CAS  Google Scholar 

  • Fernandez V, Ebert G, Winkelmann G (2005) The use of microbial siderophores for ferial iron application studies. Plant Soil 272:245–252

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth promotion by free living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Godsey CB, Schmidt JP, Schlegel AJ, Taylor RK, Thompson CR, Gehl RJ (2003) Correcting iron deficiency in corn with seed row-applied iron sulfate. Agron J 95:160–166

    Article  CAS  Google Scholar 

  • Guerinot M (2010) Iron. In: Hell R, Mendel R-R (eds) Cell biology of metals and nutrients. Plant cell monographs, vol 17. Springer, Berlin, pp 75–94

  • Graham RD, Webb MJ (1991) Micronutrients and disease resistance and tolerance in plants. Micronutrients in Agriculture 329–370

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inoculum for enhancing crop productivity. Trends Biotechnol 7:39–43

    Article  Google Scholar 

  • Kumar V, Haseeb A, Khan RU (2011) Comparative efficacy of bioinoculants, organic amendments and pesticides against Rhizoctonia solani alone on tomato CV. K-25 under pot conditions. World J Agric Sci 7(6):648–652

    CAS  Google Scholar 

  • Lee J, Lee S, Young JP (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65(2):339–349

    Article  CAS  PubMed  Google Scholar 

  • Linderman RG (1994) Role of VAM fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and Plant health. APS Press. St. Paul, MN, pp 1–26

    Google Scholar 

  • Lioussanne L (2010) The role of the arbuscular mycorrhizae-associated rhizobacteria in the biocontrol of soilborne phytopathogens. Span J Agric Res 8:51–61

    Article  Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizae symbiosis in accompanied by local and systemic alternation in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    Article  CAS  PubMed  Google Scholar 

  • Neilands JB (1981) Iron absorption and transport in microorganisms. Annu Rev Nutr 1:27–46

    Article  CAS  PubMed  Google Scholar 

  • Marek-Kozaczuk M, Deryto M, Skorupska A (1996) Tn5 insertion mutants of Pseudomonas sp. 267 defective in siderophore production and their effect on clover (Trifolium pratense) nodulated with Rhizobium leguminosarum bv. Trifolii. Plant Soil 179:269–274

    Article  Google Scholar 

  • McAllister CB, Garcia-Romera I, Godeas A, Ocampo JA (1994) Interactions between Trichoderma koningii, Fusarium solani and Glomus mosseae: effects on growth, arbuscular mycorrhizae and the saprophyte inoculants. Soil Biol Biochem 26:1363–1367

    Article  Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizae symbiosis to plant growth under different types of soil stress. Plant Biol 12:563–569

    CAS  PubMed  Google Scholar 

  • Muhanna NAS, Essa TA, El-Gamal MAH, Kamel SM (2016) Efficacy of free and formulated arbuscular mycorrhizae, Trichoderma viride and Pseudomonas fluorescens on controlling tomato root rot disease. Egypt J Biol Pest Control 26(3):477–486

    Google Scholar 

  • Radmehr A (2010) Agricultural statistics. The first of crop year 2008–2009. Office of statistics and information technology, department of planning and economy, ministry of agriculture, Tehran

  • Saberi-Riseh R, Hajieghrari B, Rouhani H, Sharifi-Tehrani A (2004) Effects of inoculum density and substrate type on saprophytic survival of Phytophthora drechsleri, the causal agent of gummosis (crown and root rot) on pistachio in Rafsanjan, Iran. Commun Agric Appl Biol Sci 69(4):653-656.

  • Saberi-Riseh R, Javan-Nikkhah M, Heidarian R, Hosseini S, Soleimani P (2004) Detection of fungal infectous agent of wheat grains in store-pits of Markazi province, Iran. Commun Agric Appl Biol Sci 69(4):541-5444.

  • Saikia R, Srivastava AK, Singh H, Arora DK, Lee MW (2005) Effect of iron availability on induction of systemic resistance to Fusarium wilt of Chickpea by Pseudomonas spp. Mycobiol 33(1):35–40

    Article  CAS  Google Scholar 

  • Shaad NW, Jones JB, Chun W (2001) Laboratory guide for identification of plant pathogenic bacteria. The American Phytopathological Society, Florida

    Google Scholar 

  • Shenker M, Chen Y (2005) Increasing iron availability to crops: fertilizers, organo-fertilizers, and biological approaches. Soil Sci Plant Nutr 51:1–17

    Article  CAS  Google Scholar 

  • Siasou E, Standing D, Killham K, Johnson D (2009) Mycorrhizal fungi increase biocontrol potential of Pseudomonas fluorescens. Soil Biology and Biochemistry 41 (6):1341-1343

    Article  CAS  Google Scholar 

  • Siddiqui ZA, Akhtar MS (2007) Effects of AM fungi and organic fertilizers on the reproduction of the nematode Meloidogyne incognita and on the growth and water loss of tomato. Biol Fertil Soils 43:603–609

    Article  Google Scholar 

  • Siddiqui ZA, Mahmood I (1996) Effects of Heterodera cajani, Meloidogyne incognita and Fusarium udum on the wilt disease complex of pigeonpea. Indian J Nematol 26:102–104

    Google Scholar 

  • Singh LP, Gill SS, Tuteja N (2011) Unravelling the role of fungal symbionts inplant abiotic stress tolerance. Plant Signal Behav 6:175–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. 3rd edn. Academic Press

  • Van Loom LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  Google Scholar 

  • Vierheilig H, Steinkellner S, Khaosaad T, Garcia-Garrido J (2008) The biocontrol effect of mycorrhization on soilborne fungal pathogens and the autoregulation of the AM symbiosis: One Mechanism, Two Effects? In: (Ed.), Mycorrhizae. Springer, 307–320

  • Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to bio significance. Trends Microbiol 15:22–30

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wilson WA, Fujino MA, Roach PJ (2001) Antagonistic controls of autophagy and glycogen accumulation by Snflp, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol Cell Biol 21(17):42–52

    Article  CAS  Google Scholar 

  • Whipps JM (2004) Prospects and limitation for mycorrhizae in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Yi Y, Saleeba J, Guerinot ML (1994) Iron uptake in Arabidopsis thaliana. In: Manthey J, Luster D, Crowley DE (eds) Biochemistry of metal micronutrients in the rhizosphere. CRC Press, Boca Raton, pp 295–307

    Google Scholar 

  • Zuo Y, Zhang F (2011) Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil 339:83–95

    Article  CAS  Google Scholar 

  • Zeynadini-Riseh A, Mahdikhani-Moghadam E, Rouhani H, Moradi M, Saberi-Riseh R, Mohammadi A (2018) Effect of some Probiotic Bacteria as Biocontrol Agents of Meloidogyne incognita and Evaluation of Biochemical Changes of Plant Defense Enzymes on Two Cultivars of Pistachio. J Agri Sci Tech 20 (1) :179-191.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roohallah Saberi-Riseh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baradar, A., Saberi-Riseh, R., Sedaghati, E. et al. Interaction between Pseudomonas fluorescens, Arbuscular mycorrhizae and iron chelates and their potential for controlling Rhizoctonia solani on potato. J Plant Pathol 103, 1221–1230 (2021). https://doi.org/10.1007/s42161-021-00894-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42161-021-00894-2

Keywords

Navigation