Skip to main content
Log in

The Gevrey analyticity and decay for the micropolar system in the critical Besov space

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the 3-D incompressible micropolar fluid system, which is a non-Newtonian fluid exhibiting micro-rotational effects and micro-rotational inertia. We aim at establishing the global Gevrey analyticity in the critical Besov space. As a first step, inspired by Chemin’s work (J Anal Math 77:27–50, 1999), we construct the global-in-time existence of the strong solutions in a more general Besov space \(\dot{B}^{\frac{3}{p}-1}_{p,q}\) with \(1\le p<\infty , 1\le q\le \infty \). A new effective variable \(R=\nabla \times \omega +\frac{1}{2}\Delta u\) is introduced at the low frequencies, which allows to eliminate the linear coupling terms \(\nabla \times u\) and \(\nabla \times \omega \), and obtain a global priori estimate. Secondly, observing the parabolic behaviors for u and \(\omega \), we would establish Gevrey analyticity based on the work by Bae, Biswas and Tadmor (Arch Ration Mech Anal 205:963–991, 2012) for the incompressible Navier–Stokes equations. The idea of effective velocity is also essential for establishing the Gevrey analyticity. As a by-product, the time-decay estimates on any derivative of solutions are also available for large time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bae; A. Biswas; E. Tadmor, Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces, Arch. Ration. Mech. Anal. 205 (2012) 963–991.

    Article  MathSciNet  Google Scholar 

  2. H. Bahouri; J. Y. Chemin; R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, Vol. 343 (Springer-verlag, Berlin, 2011).

    Book  Google Scholar 

  3. J. Bourgain, N. Pavlovi’c, Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal. 255 (2008) 2233-2247.

    Article  MathSciNet  Google Scholar 

  4. M. Cannone; G. Karch, Smooth or singular solutions to the Navier-Stokes system, J. Differential equations, 197(2004), 247-274.

    Article  MathSciNet  Google Scholar 

  5. M. Cannone, A generalization of a theorem by Kato on Navier-Stokes equations, Rev. Mat. Ineroamericana 13 (1997) 515–541.

    Article  MathSciNet  Google Scholar 

  6. M. Cannone,Ondelettes, Paraproduits et Navier-Stokes(Diderot Editeur, Paris, 1995).

    MATH  Google Scholar 

  7. F. Charve; R. Danchin; J. Xu, Gevrey analyticity and decay for the compressible Navier–Stokes system with capillarity, arXiv:1805.01764v1, to appear in Indiana Univ. Math. J. (2020).

  8. J. Y. Chemin; Localization in Fourier space and Navier–Stokes system. (English summary). Vol. I, 53–135, (Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 2004).

  9. J. Y. Chemin; Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel. J. Anal. Math.77 (1999), 27-50.

    Article  MathSciNet  Google Scholar 

  10. J. Y. Chemin; N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, J. Differential Equations 121 (1995), 314-328.

    Article  Google Scholar 

  11. Q. Chen; C. Miao, Global well-posedness for the micropolar fliud system in critical Besov spaces, J. Differential Equations 252 (2012), 2698–2724.

    Article  Google Scholar 

  12. M. Chen, Global well-posedness of the 2D incompressible micropolar fluid flows with partial viscosity and angular viscosity. Acta Math. Sci. Ser. 33 (2013), 929-935.

    Article  MathSciNet  Google Scholar 

  13. R. Danchin, Fourier analysis methods for compressible flows Topics on compressible Navier-Stokes equations, Soc. Math. France 50 (2016), 43–106.

    MathSciNet  MATH  Google Scholar 

  14. B. Dong; J. Li, J. Wu, Global well-posedness and large-time decay for the 2D micropolar equations, J. Differential Equations 262 (2017), 3488-3523.

    Article  MathSciNet  Google Scholar 

  15. B. Dong; J. Wu; X. Xu; Z. Ye (2018) Global regularity for the 2D micropolar equations with fractional dissipation.Discrete Contin. Dyn. Syst.38: 4133-4162.

    Article  MathSciNet  Google Scholar 

  16. B. Dong; Z. Zhang, Global regularity for the 2D micropolar fluid flows with zero angular viscosity. J. Differential equations, 249 (2010), 200-213.

    Article  MathSciNet  Google Scholar 

  17. A. C. Eringen, Theory of micropolar fluid, J. Math Mech. Vol. 16 (1966), 1–18.

    MathSciNet  Google Scholar 

  18. L.C.F. Ferreira; E.J. V.-Roa, Micropolar fluid system in a space of distributions and large time behavior, J. Math. Anal. Appl., vol. 332 (2007), 1425–1445.

    Article  MathSciNet  Google Scholar 

  19. H. Fujita; T. Kato, On the Navier-Stokes initial value problem, Arch. Ration. Mech. Anal. 16 (1964), 269-315.

    Article  MathSciNet  Google Scholar 

  20. G. P. Galdi, S.Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Internat. J. Engrg. Sci., 15 (1977), 105–108.

    Article  MathSciNet  Google Scholar 

  21. B. Haspot, Existence of global strong solutions in critical spaces for barotropic viscous fluids. Arch. Ration. Mech. Anal. 202 (2011), 427-460.

    Article  MathSciNet  Google Scholar 

  22. H. Koch; D. Tataru, Well-posedness for the Navier-Stokes equations,Adv. Math.157 (2001), 22-35.

    Article  MathSciNet  Google Scholar 

  23. G. Lukaszewicz, Micropolar Fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology, (Birkhäuser, Boston, 1999).

  24. E. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, 1970).

    MATH  Google Scholar 

  25. V.K. Stokes, Theories of Fluids with Microstructure, (Springer, New York, 1984).

    Book  Google Scholar 

  26. B. Wang (2015) Ill-posedness for the Navier-Stokes equations in critical Besov spaces \({\dot{B}}^{-1}_{\infty ,q}\). Adv. Math. 268: 350-372.

    Article  MathSciNet  Google Scholar 

  27. T. Yoneda, Ill-posedness of the 3D Navier-Stokes equations in a generalized Besov space near \(BMO^{{-1}}\),J. Funct. Anal. 258 (2010), 3376-3387.

    Article  MathSciNet  Google Scholar 

  28. B. Yuan, On the regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space, Proc. Amer. Math. Soc., 138 (2010), 2025-2036.

    Article  MathSciNet  Google Scholar 

  29. B. Yuan; X. Li, Blow-up criteria of smooth solutions to the three-dimensional micropolar fluid equations in Besov space. Discrete Contin. Dyn. Syst. 9 (2016), 2167-2179.

    Article  MathSciNet  Google Scholar 

  30. W. Zhu; J. Zhao, Regularizing rate estimates for the 3-D incompressible micropolar fluid system in critical Besov spaces. Appl. Anal. 99 (2020), 428-446.

    Article  MathSciNet  Google Scholar 

  31. W. Zhu; J. Zhao, The optimal temporal decay estimates for the micropolar fluid system in negative Fourier-Besov spaces. J. Math. Anal. Appl. 475 (2019), 154-172.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zihao Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z. The Gevrey analyticity and decay for the micropolar system in the critical Besov space. J. Evol. Equ. 21, 4751–4771 (2021). https://doi.org/10.1007/s00028-021-00731-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-021-00731-0

Keywords

Mathematics Subject Classification

Navigation