Skip to main content
Log in

Design and test of a portable Gamma-Ray Burst simulator for GECAM

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The main scientific goal of the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) is to monitor various types of Gamma-Ray Bursts (GRB) originated from merger of binary compact stars, which could also produce gravitational wave, and collapse of massive stars. In order to study the response of GECAM Gamma-Ray Detectors (GRDs) to high-energy bursts and test the in-flight trigger and localization software of GECAM before the launch, a portable GRB simulator device is designed and implemented based on grid controlled X-ray tube (GCXT) and direct digital synthesis (DDS) technologies. The design of this GRB simulator which modulates X-ray flux powered by high voltage up to 20 kV is demonstrated, and the time jitter (FWHM) of the device is about 0.9 μs. Before the launch in December, 2020, both two GECAM satellites were irradiated by different types of GRBs (including short and long bursts in duration) generated by this GRB simulator. The light curves detected with GECAM/GRDs are consistent with the programmed input functions within statistical uncertainties, indicating the good performance of both the GRDs and the GRB simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dai, Z., Wu, X., Liang, E., et al.: How to understand high-energy gamma-ray bursts? Chin. Sci. Bull. 63(24), 6 (2018). in Chinese. https://doi.org/10.1360/N972018-00034

    Article  Google Scholar 

  2. Kouveliotou, C., Meegan, C.A, Fishman, G.J: oters Identification of two classes of gamma-ray bursts. Astrophys. J. 413, L101–L104 (1993). https://doi.org/10.1086/186969

    Article  ADS  Google Scholar 

  3. P. Abbott, B., Abbott, R., D. Abbott, T., et al.: Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848(2), L13 (2017). https://doi.org/10.3847/2041-8213/aa920c

    Article  ADS  Google Scholar 

  4. Goldstein, A., Veres, P., Burns, E., et al.: An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A. Astrophys. J. Lett. 848(2), L14 (2017). https://doi.org/10.3847/2041-8213/aa8f41

    Article  ADS  Google Scholar 

  5. Xiong, S.: Special topic: GECAM gamma-ray all-sky monitor. Sci. Sin. Phys. Mech. Astron. 50(12), 129501 (2020, in Chinese). https://doi.org/10.1360/SSPMA-2020-0457

  6. Zhang, D., Li, X., Xiong, S., et al.: Energy response of GECAM gamma-ray detector based on LaBr3:Ce and SiPM array. Nucl. Instrum. Methods Phys. Res. A 921, 8–13 (2019). https://doi.org/10.1016/j.nima.2018.12.032

    Article  ADS  Google Scholar 

  7. Lv, P., Xiong, S.L., Sun, X.L., et al.: A low-energy sensitive compact gamma-ray detector based on LaBr3 and SiPM for GECAM. J. Instrum. 13 (08), P08014 (2018). https://doi.org/10.1088/1748-0221/13/08/P08014

    Article  Google Scholar 

  8. Bissaldi, E., von Kienlin, A., Lichti, G., et al.: Ground-based calibration and characterization of the Fermi gamma-ray burst monitor detectors. Exper. Astron. 24(1-3), 47–88 (2009). https://doi.org/10.1007/s10686-008-9135-4

    Article  ADS  Google Scholar 

  9. Sato, E., Ichimaru, T., Usuki, T., et al.: Condenser-discharge stroboscopic x-ray generator SX-C98. In: 23rd International Congress on High-Speed Photography and Photonics. https://doi.org/10.1117/12.350542, vol. 3516, pp 618–625. International Society for Optics and Photonics (1999)

  10. Hu, H., Zhao, B., Sheng, L., et al.: A simulation experiment system for X-ray pulsar based navigation. Acta Physica Sinica 60(2), 029701 (2011). in Chinese. https://doi.org/10.7498/aps.60.029701

    Article  Google Scholar 

  11. Sheng, L., Zhao, B., Liu, Y.: Novel space communication technology based on modulated x-ray source. In: Morawe, C., Khounsary, A.M., Goto, S. (eds.) Advances in X-Ray/EUV Optics and Components IX. https://doi.org/10.1117/12.2062712, vol. 9207, pp 278–284. International Society for Optics and Photonics, SPIE (2014)

  12. Zhou, F., Wu, G., Zhao, B., et al.: An analog modulated simulation source for X-ray pulsar-based navigation. Acta Physica Sinica 62(11), 119701 (2013). in Chinese. https://doi.org/10.7498/aps.62.119701

    Article  Google Scholar 

  13. Lizhi, S.: Research of Key Technologies for X-ray Pulsar Simulation and X-ray Detector. PhD thesis, Beijing: University of Chinese Academy of Sciences (2013)

  14. Li, X., Wen, X., Sun, X., et al.: The GECAM and its payload. Sci. Sin.: Phys. Mech. Astron. 50(12), 129508 (2020). in Chinese. https://doi.org/10.1360/SSPMA-2019-0417

    Google Scholar 

  15. ADI. Datasheet of ADHV4702-1. https://www.analog.com/media/en/technical-documentation/data-sheets/ADHV4702-1.pdf, Accessed 8 March 2021

  16. Vankka, J.: Methods of mapping from phase to sine amplitude in direct digital synthesis. IEEE Trans Ultrason Ferroelectr Freq Control 44(2), 526–534 (1997). https://doi.org/10.1109/58.585137

    Article  Google Scholar 

  17. Golkhou, V.Z., Butler, N.R., Littlejohns, O.M.: The energy dependence of grb minimum variability timescales. Astrophys. J. 811(2), 93 (2015). https://doi.org/10.1088/0004-637X/811/2/93

    Article  ADS  Google Scholar 

  18. Carmel. Datasheet of NK732. https://www.carmelinst.com/images/NK732_Datasheet.pdf, Accessed 8 March 2021

  19. Nian, Y., Yupeng, X., Jia, H., et al.: A random signal emulator for silicon drift detector based FPGA. Nuclear Techniques 43(8), 80–85 (2020). in Chinese. https://doi.org/10.11889/j.0253-3219.2020.hjs.43.080402

    Google Scholar 

  20. Fenimore, E.E., Madras, C.D., Nayakshin, S.: Expanding relativistic shells and gamma-ray burst temporal structure. Astrophys. J. 473(2), 998 (1996). https://doi.org/10.1086/178210

    Article  ADS  Google Scholar 

  21. EE Fenimore, JP, Norris, JT, et al.: Bonnell Gamma-ray burst peak duration as a function of energy. Astrophys. J. Lett. 448(2), L101 (1995). https://doi.org/10.1086/309603

    Article  ADS  Google Scholar 

  22. Link, B., Epstein, R.I, Priedhorsky, W.C: Prevalent properties of gamma-ray burst variability. Astrophys. J. 408, L81–L84 (1993). https://doi.org/10.1086/186836

    Article  ADS  Google Scholar 

  23. Band, D.L.: Gamma-ray burst spectral evolution through cross-correlations of discriminator light curves. Astrophys. J. 486(2), 928 (1997). https://doi.org/10.1086/304566

    Article  ADS  Google Scholar 

  24. Muleri, F., Baldini, L., Baumgartner, W., et al.: Calibrating the IXPE observatory from ground to space. In: UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XX. https://doi.org/10.1117/12.2275133, vol. 10397, p 103970G. International Society for Optics and Photonics (2017)

  25. Golkhou, V.Z., Butler, N.R.: Uncovering the intrinsic variability of gamma-ray bursts. Astrophys. J. 787(1), 90 (2014). https://doi.org/10.1088/0004-637X/787/1/90

    Article  ADS  Google Scholar 

  26. Kocevski, D., Butler, N., Bloom, J.S: Pulse width evolution of late-time x-ray flares in gamma-ray bursts. Astrophys. J. 667(2), 1024 (2007). https://doi.org/10.1086/520041

    Article  ADS  Google Scholar 

  27. Pal’shin, V.D., Hurley, K., Svinkin, D.S., et al.: Interplanetary network localizations of konus short gamma-ray bursts. Astrophys. J. Suppl. Ser. 207(2), 38 (2013). https://doi.org/10.1088/0067-0049/207/2/38

    Article  ADS  Google Scholar 

  28. Hurley, K., Briggs, M.S., Kippen, R.M., et al.: The interplanetary network supplement to the burst and transient source experiment 5B catalog of cosmic gamma-ray bursts. Astrophys. J. Suppl. Ser. 196(1), 1 (2011). https://doi.org/10.1088/0067-0049/196/1/1

    Article  ADS  Google Scholar 

  29. Hurley, K., Briggs, M.S., Kippen, R.M., et al.: The ulysses supplement to the BATSE 4Br catalog of cosmic gamma-ray bursts. Astrophys. J. Suppl. Ser. 122(2), 497 (1999). https://doi.org/10.1086/313220

    Article  ADS  Google Scholar 

  30. Zhao, Z., Wang, Y., Zhang, L., et al.: Experiments and simulation of X-ray optical Wolter-I focusing mirror. Opt. Precis. Eng. 027(011), 2330–2336 (2019). in Chinese. https://doi.org/10.3788/OPE.20192711.2330

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Strategic Priority Program on Space Science, the Chinese Academy of Sciences, Grant No. XDA15020501, No. XDA1531010301 and No. XDA15360102. We are also grateful to Shanghai KEYWAY ELECTRON Technology Co., Ltd for their assistance in the processing and design of X-ray tubes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yupeng Xu or Yusa Wang.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Xiao, S., Xiong, S. et al. Design and test of a portable Gamma-Ray Burst simulator for GECAM. Exp Astron 52, 45–58 (2021). https://doi.org/10.1007/s10686-021-09776-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-021-09776-y

Keywords

Navigation