Analytical Sciences
Online ISSN : 1348-2246
Print ISSN : 0910-6340
ISSN-L : 0910-6340
Original Papers
Molecularly Imprinted Polymer Based GCE for Ultra-sensitive Voltammetric and Potentiometric Bio Sensing of Topiramate
Magdi E. KHALIFATamer Awad ALIA. B. ABDALLAH
Author information
JOURNAL FREE ACCESS
Supplementary material

2021 Volume 37 Issue 7 Pages 955-962

Details
Abstract

Topiramate (TOP) drug is classified as one of the most commonly used human drugs for anticonvulsants and antiepileptic, so its rapid detection and monitoring is of great importance. In this work, new potentiometric (MIP/PVC/GCE) and voltammetric (MIP/GO/GCE) sensors for the selective and sensitive determination of TOP were fabricated based on the molecularly imprinted polymer (MIP) approach. The MIP was synthesized by the polymerization of acrylamide and methacrylic acid as monomers, in the presence of TOP as a template and ethylene glycol dimethacrylate as a cross-linker. The obtained products were characterized by FT-IR, SEM, BET, and EDX. The MIP was embedded in a plasticized polyvinyl chloride membrane and used as a potentiometric sensor for sensing TOP. Alternatively, the synthesized MIP and graphene oxide (GO) were deposited layer-by-layer on the surface of GCE to construct a voltammetric sensor for studying the electrochemical behavior of the drug. Under optimized conditions, both electrochemical sensors showed excellent linear relationships between the concentration of TOP and the response signals of MIP/GO/GCE or MIP/PVC/GCE sensors in the 2.7 × 10−10 to 4.9 × 10−3 M and 1 × 10−9 to 3.4 × 10−3 M ranges, respectively. Also, both sensors have good reproducibility and high stability for up to 15 days for a voltammetric sensor and 28 days for a potentiometric sensor. The utility of these sensors was checked for TOP analysis in different real samples with good recovery (92.8 – 99%).

Fullsize Image
Content from these authors
© 2021 by The Japan Society for Analytical Chemistry
Previous article Next article
feedback
Top