Skip to main content
Log in

Effects of Fast Shot Speed and Wall Thickness on the Microstructures and Mechanical Properties of the High Pressure Die-casting 6061-SiC Composites

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this work, a 6061-SiC composite was prepared using the compound casting method and then processed using a vacuum-assisted high-pressure die-casting technology under fast shot speeds of 1, 2 and 3 m/s, respectively. The effect of fast shot speed and wall thickness on the skin layer, porosities and mechanical properties were studied. The results showed that, with the increase of the fast shot speed, the thickness of the skin layer was decreased significantly. The porosities of the samples were decreased first and then increased with the increase of wall thickness. The pore number in the 4-mm sample was the smallest, while the pore number in the 8-mm sample was the largest, with many large-sized strip shrinkage pores. Under a fast shot speed of 1 m/s, the large-sized pores and the skin layer (~ 0.5 mm) led to the brittle fracture and low tensile properties of the sample. When the fast shot speed was increased to 3 m/s, the defects of the microstructures mentioned above were improved, and the sample’s tensile properties were further improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. [1] Z.J. Wang, S. Liu, Z.X. Qiu, H.Y. Sun, and W.C. Liu: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 6714–26.

    Article  Google Scholar 

  2. J. Nampoothiri, I. Balasundar, T. Raghu, and K. R. Ravi: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 149–60.

    Article  Google Scholar 

  3. E. A. M. Shalaby, A. Y. Churyumov, D. H. A. Besisa, A. Daoud, and M. T. AbouEl-khair: J. Mater. Eng. Perform., 2017, vol. 26, pp. 3079–89.

    Article  Google Scholar 

  4. [4] T. Liu, S. Moralesa, M. Karkkainena, L. Nastac, V. Arvikar, I. Levin, and L.N. Brewer: Mat. Sci. Eng. A, 2019, vol. 756, pp. 373–80.

    Article  CAS  Google Scholar 

  5. [5] Y. Zhang, J.B. Patel, Y. Wang, and Z. Fan: Mater. Charact., 2018, vol. 144, pp. 498–504.

    Article  CAS  Google Scholar 

  6. [6] M. Sistaninia, H. Doostmohammadi, and R. Raiszadeh: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 3020–26.

    Article  Google Scholar 

  7. [7] M.R. Ghomashchi: J. Mater. Process. Tech. 1995, vol. 52, pp. 193–206.

    Article  Google Scholar 

  8. [8] A.R. Adamane, L. Arnberg, E. Fiores, G. Timelli, and F. Bonollo: Int. J. Metalcast., 2015, vol. 9(1), pp. 43–53.

    Article  Google Scholar 

  9. [9] Y.J. Huang, B.H. Hu, I. Pinwill, W. Zhou, and D.M.R. Taplin: Mater. Manuf. Process., 2000, vol. 15(1), pp. 97–105.

    Article  CAS  Google Scholar 

  10. Q.L. Wang, and S.M. Xiong: Trans. Nonferrous Metal. Soc., 2014, vol. 24, pp. 3051–59.

    Article  CAS  Google Scholar 

  11. Aghion E, Moscovitch N, Arnon A (2007) Mater. Sci. Eng. A 47, 341–346

    Article  Google Scholar 

  12. [12] H. Hu, M. Zhou, Z.Z. Sun, and N.Y. Li: J. Mater. Process. Tech., 2008, vol. 201(1), pp. 364–68.

    Article  CAS  Google Scholar 

  13. [13] G.Y. Gu, S.T. Lin, Y. Xia, and Q. Zhou: Mater. Design, 2012, vol. 38, pp. 124–32.

    Article  CAS  Google Scholar 

  14. C.H. Cáceres, W.J. Poole, A.L. Bowles, and C.J. Davidson: Mat. Sci. Eng. A, 2005, 402, 269–77.

    Article  Google Scholar 

  15. [15] G.S. Gan, B. Yang, Q. Gao, Y.P. Wu, and M.B. Yang: Mater. Trans., 2016, vol. 57(8), pp. 1296–99.

    Article  CAS  Google Scholar 

  16. [16] A.V. Pozdniakov, A. Lotfy, A. Qadir, E. Shalaby, M.G. Khomutov, A.Y. Churyumov, and V.S. Zolotorevskiy: Mat. Sci. Eng. A, 2017, vol. 688, pp. 1–8.

    Article  CAS  Google Scholar 

  17. Q.Y. Hu, H.D. Zhao, and F.D. Li: Mater. Manuf. Process. 2016, 31, 1292–300.

    Article  CAS  Google Scholar 

  18. Q.Y. Hu, H.D. Zhao, and F.D. Li: Mat. Sci. Eng. A, 2017, vol. 680, pp. 270–77.

    Article  CAS  Google Scholar 

  19. [19] Z. Zhang, X.G. Chen, and A. Charette: J. Mater. Sci., 2007, vol. 42, pp. 7354–62.

    Article  CAS  Google Scholar 

  20. [20] K.R. Ravi, R.M. Pillai, K.R. Amaranathan, and B.C. Pai: J. Alloy. Compd., 2008, vol. 456, pp. 201–10.

    Article  CAS  Google Scholar 

  21. Z.W. Chen: Mat. Sci. Eng. A, 2003, vol. 348, pp. 145–53.

    Article  Google Scholar 

  22. [22] C.H. Cáceres, and A.V. Nagasekhar: Model. Simul. Mater. Sc., 2012, vol. 20(2), pp. 373–79.

    Google Scholar 

  23. Z. Shan, and A.M. Gokhale: Mat. Sci. Eng. A, 2003, vol. 361, pp. 267–74.

    Article  Google Scholar 

  24. L. Wan, Z.Q. Hu, S.S. Wu, and X.Q. Liu: Mat. Sci. Eng. A, 2013, vol. 576, pp. 252–58.

    Article  CAS  Google Scholar 

  25. [25] C. Hu, H.D. Zhao, X.L. Wang, and J.P. Fu: Vacuum, 2020, vol. 180, 109561.

    Article  CAS  Google Scholar 

  26. [26] X.B. Li, W.B. Yu, J.S. Wang, and S.M. Xiong: Mat. Sci. Eng. A, 2018, vol. 736, pp. 219–27.

    Article  CAS  Google Scholar 

  27. [27] P. Fan, S.L. Cockcroft, D.M. Maijer, L. Yao, C. Reilly, and A.B. Phillion: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 2421–35.

    Article  Google Scholar 

  28. [28] J.D. Zhu; S.L. Cockcroft, and D.M. Maijer: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1075–85.

    Article  CAS  Google Scholar 

  29. [29] M.H. Sarfraz, M. Jahanzaib, W. Ahmed, and S. Hussain: Int. J. Adv. Manuf. Tech., 2019, vol. 102, pp. 759–73.

    Article  Google Scholar 

  30. [30] Y.F. Zhang, J. Zheng, Y.T. Xia, H.G. Shou, W. Tan, W.J. Han, and Q. Liu: Mat. Sci. Eng. A, 2020, vol. 772, 138781.

    Article  CAS  Google Scholar 

  31. [31] Z.X. Li, Y.H. Jing, H.M. Guo, X.Y. Sun, K. Yu, A.S. Yu, X.W. Jiang, and X.J. Yang: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1204–12.

    Article  Google Scholar 

  32. [32] W. Wen, A.A. Luo, T.G. Zhai, Y. Jin, Y.T. Cheng, and I. Hoffmanna: Scripta. Mater., 2012, vol. 67, pp. 879–82.

    Article  CAS  Google Scholar 

  33. [33] Z.H. Yuan, Z.P. Guo, and S.M. Xiong: J. Mater. Sci. Technol., 2019, vol. 35, pp. 1906–16.

    Article  Google Scholar 

Download references

Acknowledgments

The research is supported by the Natural Science Foundation of Jiangxi Province (Grant No. 20192BAB206003); the Open Funds of Key Laboratory for Microstructural Control of Metallic Materials of Jiangxi Province (Grant No. EJ201903061); the Open Funds of National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, Key Laboratory of High-efficiency Near-net-shape Forming Technology and Equipments for Metallic Materials, Ministry of Education (Grant No. 2018001); the PhD Research Foundation Project of Nanchang Hangkong University (Grant No. EA201803210); the National Natural Science Foundation of China (Grant No. AA202103036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiyao Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 14, 2020, accepted April 18, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Guo, W., Xiao, P. et al. Effects of Fast Shot Speed and Wall Thickness on the Microstructures and Mechanical Properties of the High Pressure Die-casting 6061-SiC Composites. Metall Mater Trans B 52, 2283–2293 (2021). https://doi.org/10.1007/s11663-021-02197-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02197-4

Navigation