Skip to main content
Log in

Influence of faults on alteration, mineralogy, and geotechnical behavior of granitic residual soils

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Contact metamorphism and metasomatism are imposed on granitic rocks by late intrusions. This study shows the consequences of this phenomenon on the pedogenesis of granitic rocks and on the geotechnical properties of granitic residual soils. This study comprises two saprolitic soils formed from the same granitic body in a site located in the Southern Brazil Coast. A biotite-rich residual soil (BR soil) was formed in the vicinity of a dyke that crosses the study area and concentrates a history of landslides. The second soil, a red saprolitic residual soil (RR soil), was formed far from the intruded fault. Chemical, physical, and mineralogical characterizations were carried out to describe the materials and the changes imposed by their alteration. Effects of alteration on the soil’s behavior were assessed in terms of hydraulic conductivity, one-dimensional compressibility, and shear strength. Both soils presented a fragmented structure and cataclastic texture over feldspar matrices. The good drainage conditions induced the development of large amounts of kaolinite. Suction values increase with the alteration level and hydraulic conductivity decreases. Under oedometric loading BR soil is stiffer than RR soil, despite its higher porosity. RR soil has higher shear strength than BR soil, which explains the history of landslides that mobilize this soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aristizabal E, Roser B, Yokota S (2005) Tropical chemical weathering of hillslope deposits and bedrock source in the Aburrá Valley, northern Colombian Andes. Eng Geol 81:389–406. https://doi.org/10.1016/j.enggeo.2005.08.001

    Article  Google Scholar 

  • ASTM (2007) D 422–63 standard test method for particle-size analysis of soils. ASTM International, West Conshohocken. https://doi.org/10.1520/D0422-63R07E02

    Article  Google Scholar 

  • ASTM (2010a) D 4318 standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International, West Conshohocken. https://doi.org/10.1520/D4318-10

    Article  Google Scholar 

  • ASTM (2010b) D 5298 standard test method for measurement of soil potential (suction) using filter paper. ASTM International, West Conshohocken. https://doi.org/10.1520/D5298-10

    Article  Google Scholar 

  • ASTM (2010c) D 5084 Measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. ASTM International, West Conshohocken. https://doi.org/10.1520/D5084-10

    Article  Google Scholar 

  • ASTM (2011) D 2435 standard test methods for one-dimensional consolidation properties of soils using incremental loading, ASTM Int. West Conshohocken, PA. https://doi.org/10.1520/D2435_D2435M-11R20

  • ASTM (2013) D 7015 Standard practices for obtaining intact block (cubical and cylindrical) samples of soils. ASTM International, West Conshohocken. https://doi.org/10.1520/D7015-13

  • Barrese E, Pellegrino A, Prestininzi A (2006) Weathering of crystalline–metamorphic rocks in the Allaro and Amuza river basin (Serre Massif, Calabria): general aspects and effects of thermal– metamorphic contact belts. Ital J Eng Geol Environ 6(1):51–74. https://doi.org/10.4408/IJEGE.2006-01.O-04

    Article  Google Scholar 

  • Basei MAS et al (2000) The Dom Feliciano Belt of Brazil and Uruguay and its foreland domain the Rio de la Plata Cratos: framework, tectonic evolution and correlation with similar provinces of Southwestern Africa. In: Milani EJ, Thomaz Filho A, Campos DA (eds) Cordani UG. Tectonic Evolution of South America, Rio de Janeiro, pp 311–334

    Google Scholar 

  • Bastos CAB, Gehling WYY, Milititsky J (2001) Aplicação de modelos de previsão da resistência ao cisalhamento com relação à sucção para solos residuais de um perfil granítico. In: 4º Simpósio Brasileiro de Solos Não Saturados, v.1, Porto Alegre, 46–62. (In Portuguese)

  • Bevilaqua FZ (2004) Estudo do comportamento geomecânico de solos residuais de granito de Florianópolis. Dissertation, Universidade Federal de Santa Catarina (In Portuguese)

  • Bitencourt MF et al. (2008) Estratigrafia do batólito Florianópolis, Cinturão Dom Feliciano, na região de Garopaba-Paulo Lopes, SC. Revista Pesquisas em Geociências 35(1):109–136. https://doi.org/10.22456/1807-9806.17898 (In Portuguese)

  • Blight GE (2012) Origin and formation of residual soils. In: Blight GE, Leong EC (eds) Mechanics of Residual Soils. CRC Press, London, pp 1–40

    Google Scholar 

  • Boehl PEG (2011) Algumas observações sobre as propriedades geotécnicas de solos estruturados derivados de granito da Grande Florianópolis. Dissertation, Universidade Federal de Santa Catarina (In Portuguese)

  • Bogado GO, Reinert HO, Francisca FM (2019) Geotechnical properties of residual soils from the Northeast of Argentina. Int J Geotech Eng 13(2):112–121. https://doi.org/10.1080/19386362.2017.1326682

    Article  Google Scholar 

  • Branco LP, Gomes AT, Cardoso AS, Pereira CS (2014) Natural variability of shear strength in a granite residual soil from Porto. Geotech Geol Eng 32:911–922. https://doi.org/10.1007/s10706-014-9768-1

    Article  Google Scholar 

  • Brenner RP, Garga VK, Blight GE (2012) Shear strength behaviour and the measurement of shear strength in residual soils. In: Blight GE, Leong EC (eds) Mechanics of residual soils. CRC Press, London, pp 213–284

    Google Scholar 

  • BSI (1990) BS 1377–8 British standard methods of test for soils for civil engineering purposes – part 8: Shear strength test (effective stress), London

  • Chen YL, Wang SR, Ni J, Azzam R, Fernández-Steeger TM (2017) An experimental study of the mechanical properties of granite after high temperature exposure based on mineral characteristics. Eng Geol 220:234–242. https://doi.org/10.1016/j.enggeo.2017.02.010

    Article  Google Scholar 

  • Cheung CK, Greenway DR, Massey JB (1988) Direct shear testing of a completely decomposed granite. Int Conf Geomech Trop Soils 1:109–118

    Google Scholar 

  • CPRM (2010) Mapa Geodiversidade do Estado de Santa Catarina 1:500.000. https://rigeo.cprm.gov.br/jspui/handle/doc/14712 (In Portuguese)

  • Dearman WR, Irfan TY (1978) Classification and index properties of weathered coarse-grained granites from southwest England. In: 3rd Int. Congress IAEG 2:119–130.

  • Duncan JM, Chang CY (1970) Nonlinear analysis of stress and strain in soils. J Soil Mech Found Div 96(5):1629–1653

    Article  Google Scholar 

  • Ferreira PMV, Bica AVD (2006) Problems on identification of the effects of structure and critical state in a soil with a transitional behaviour. Géotechnique 56(7):445–454. https://doi.org/10.1680/geot.2006.56.7.445

    Article  Google Scholar 

  • Fonseca AV et al (2006) Characterization of a profile of residual soil from granite combining geological, geophysical and mechanical testing techniques. Geotech Geol Eng 24:1307–1348

    Article  Google Scholar 

  • Fookes PG (1997) Tropical residual soils. The Geological Society, London

    Google Scholar 

  • Fredlund DG, Xing A (1994) Equations for the soil–water characteristic curve. Can Geotech J 31(4):521–532. https://doi.org/10.1139/t94-061

    Article  Google Scholar 

  • Godoi CS et al (2013) Comparação de parâmetros de resistência ao cisalhamento obtidos através de retro análises e ensaios laboratoriais – estudo de caso: km 25, BR-282, Santo Amaro da Imperatriz-SC. In.: COBRAE 2013, Angra dos Reis, pp. 249–254 (In Portuguese)

  • Heidemann M (2015) Estudo dos solos de uma encosta instável em São José - SC: intemperismo e comportamento geotécnico. Federal University of Rio Grande do Sul, Thesis (In Portuguese)

    Google Scholar 

  • Higashi RAR (2006) Metodologia de uso e ocupação dos solos de cidades costeiras brasileiras através de SIG com base no comportamento geotécnico e ambiental. Universidade Federal de Santa Catarina (In Portuguese), Thesis

    Google Scholar 

  • Hossain MA, Yin JH (2010) Behavior of a compacted completely decomposed granite soil from suction controlled direct shear tests. J Geotech Geoenviron Eng 136(1):189–198. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000189

    Article  Google Scholar 

  • Huat BB, Toll DG, Prasad A (2012) Handbook of tropical residual soils engineering. CRC Press, New York

    Book  Google Scholar 

  • Southern Asia (Irfan TY (1988) Fabric variability and index testing of a granitic saprolite. Int Conf Geomech Trop Soils 1:25–35

    Google Scholar 

  • Irfan TY (1994) Mineralogy and fabric characterization and classification of weathered granitic rocks in Hong Kong. GEO Report nº41, Hong Kong

  • Irfan TY (1998) Structurally controlled landslides in saprolitic soils in Hong Kong. Geotech Gdecomposed granite soil in Koreaeol Eng 16:215–238. https://doi.org/10.1023/A:1008805827178

    Article  Google Scholar 

  • Jeong J, Kang B, Lee K, Yang J (2000) Shear strength properties of decomposed granite soil in Korea. Eighth International Conference on Computing in Civil and Building Engineering 1466–1473. https://doi.org/10.1061/40513(279)191

  • Junaideen SM et al (2010) Behaviour of recompacted residual soils in a constant shear stress path. Can Geotech J 47:648–661. https://doi.org/10.1139/T09-129

    Article  Google Scholar 

  • Kim YT, Lee JS (2013) Slope stability characteristic of unsaturated weathered granite soil in Korea considering antecedent rainfall. In: Geo-Congress 2013, ASCE. 394–401. https://doi.org/10.1061/9780784412787.039

  • La Rochelle P, Leroueil S et al (1988) Observational approach to membrane and area corrections in triaxial tests. In: Donaghe RT, Chaney R, Silver ML (eds) Advanced Triaxial Testing of Soil and Rock, ASTM International, West Conshohocken. https://doi.org/10.1520/STP29110S

  • Lee IK, Coop MR (1995) The intrinsic behaviour of a decomposed granite soil. Géotechnique 45(1):117–130

    Article  Google Scholar 

  • Leroueil S, Vaughan PR (1990) The general and congruent effects of structure in natural soils and weak rocks. Géotechnique 40(3):467–488

    Article  Google Scholar 

  • Little AL (1969) The engineering classification of residual tropical soils. In: Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico, 1–10

  • Mofiz SA, Taba MR, Bari MN (2004) Triaxial tests and model performance of stress-strains for decomposed granite. In: GeoTrans 2004, ASCE, 1795–1804. https://doi.org/10.1061/40744(154)173

  • Nesbitt HW, Young GM (1989) Formation and diagenesis of weathering profiles. J Geol 97:129–147

    Article  Google Scholar 

  • Ng CWW, Fung WT, Cheuk CY, Zhang L (2004) Influence of stress ratio and stress path on behavior of loose decomposed granite. J Geotech Geoenviron Eng 130(1):36–44. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:1(36)

    Article  Google Scholar 

  • Ng CW, Guan P, Shang YJ (2001) Weathering mechanisms and indices of the igneous rocks of Hong Kong. Q J Eng Geol Hydrogeol 34(2):133–151. https://doi.org/10.1144/qjegh.34.2.133

    Article  Google Scholar 

  • Novais-Ferreira H, Fonseca AV (1988) Engineering properties of a saprolitic soil from granite. In: Int. Conf Geomech Trop Soils 1:181–188

  • Parker A (1970) An index of weathering for silicate rocks. Geol Mag 103:501–504

    Article  Google Scholar 

  • Pellegrino A, Presininzi A (2007) Impact of weathering on the geomechanical properties of rocks along thermal–metamorphic contact belts and morpho-evolutionary processes: The deep-seated gravitational slope deformations of Mt. Granieri-Salincriti (Calabria– Italy). Geomorphology 87:176–195. https://doi.org/10.1016/j.geomorph.2006.03.032

    Article  Google Scholar 

  • Philipp RP, Pimentel MM, Chemale F Jr (2016) Tectonic evolution of the Dom Feliciano Belt in Southern Brazil: geological relationships and U-Pb geochronology. Braz J Geol 46(1):83–104. https://doi.org/10.1590/2317-4889201620150016

    Article  Google Scholar 

  • Pineda JA, Colmenares JE, Hoyos LR (2014) Effect of fabric and weathering intensity on dynamic properties of residual and saprolitic soils via resonant column testing. ASTM 37(5):800–816. https://doi.org/10.1520/GTJ20120132

    Article  Google Scholar 

  • Price JR, Velbel MA (2003) Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chem Geol 202(3–4):397–416. https://doi.org/10.1016/j.chemgeo.2002.11.001

    Article  Google Scholar 

  • Radwan AM (1988) Properties of granitic soil in Aswan, Egypt. Int Conf Geomech Trop Soils 1:203–209

    Google Scholar 

  • Rahardjo H et al (2004) Characteristics of residual soils in Singapore as formed by weathering. Eng Geol 73(1–2):157–169. https://doi.org/10.1016/j.enggeo.2004.01.002

    Article  Google Scholar 

  • Rahardjo H et al (2012) Variability of residual soil properties. Eng Geol 141–142:124–140. https://doi.org/10.1016/j.enggeo.2012.05.009

    Article  Google Scholar 

  • Raimundo HA, Santos GT, Davison Dias R (2002) Aspectos geotécnicos do contato granito/diabásio associados à instabilidade de encostas em Florianópolis – SC. In: III Simpósio de Prática de Engenharia Geotécnica da Região Sul, Editora Palloti, Porto Alegre, 251–263. (In Portuguese)

  • Rocchi I, Coop MR (2015) The effects of weathering on the physical and mechanical properties of a granitic saprolite. Géotechnique 65(6):482–493. https://doi.org/10.1680/geot.14.P.177

    Article  Google Scholar 

  • Rodrigues CMG, Lemos LJL (2006) Comportamento tensão-deformação-resistência de solos de um saprólito granítico. In.: Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica, ABMS, Curitiba. (In Portuguese)

  • Roscoe KH, Schofield AN, Wroth CP (1958) On the yielding of soils. Géotechnique 8(1):22–53. https://doi.org/10.1680/geot.1958.8.1.22

    Article  Google Scholar 

  • Salih AG (2012) Review on granitic residual soils geotechnical properties. Electron J Geotech Eng 2012T:2645–2658

    Google Scholar 

  • Saunders MK, Fookes PG (1970) A review of the relationship of rock weathering and climate and its significance to foundation engineering. Eng Geol 4(4):289–325. https://doi.org/10.1016/0013-7952(70)90021-9

    Article  Google Scholar 

  • Silveira GC (1993) Características geomecânicas dos solos residuais e coluvionares do escorregamento na Estrada do Soberbo, Alto da Boa Vista, RJ. Dissertation, Universidade Federal do Rio de Janeiro. (In Portuguese)

  • Streckeisen AL (1976) To each plutonic rock its proper name. Earth Sci 12(1):1–33. https://doi.org/10.1016/0012-8252(76)90052-0

    Article  Google Scholar 

  • Vázquez P, Shushakova V, Heras MG (2015) Influence of mineralogy on granite decay induced by temperature increase: experimental observations and stress simulation. Eng Geol 189:58–67. https://doi.org/10.1016/j.enggeo.2015.01.026

    Article  Google Scholar 

  • Wang YH, Yan WM (2006) Laboratory studies of two common saprolitic soils in Hong Kong. J Geotech Geoenviron Eng 132(7):923–930. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:7(923)

    Article  Google Scholar 

  • Wesley LD (1990) Influence of structure and composition on residual soils. J Geotech Eng 116(4):589–603. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:4(589)

    Article  Google Scholar 

  • Wesley LD (2010) Geotechnical engineering in residual soils. Wiley, New Jersey, p 249p

    Book  Google Scholar 

  • Yan WM, Li XS (2012) Mechanical response of a medium-fine-grained decomposed granite in Hong Kong. Eng Geol 129–130:1–8. https://doi.org/10.1016/j.enggeo.2011.12.013

    Article  Google Scholar 

  • Yang R, Huang J, Griffiths DV, Li J, Sheng D (2019) Importance of soil property sampling location in slope stability assessment. Can Geotech J 56(3):335–346. https://doi.org/10.1139/cgj-2018-0060

    Article  Google Scholar 

  • Zhang XW, Kong LW, Yin S, Chen C (2017) Engineering geology of basaltic residual soil in Leiqiong, Southern China. Eng Geol 220:196–207. https://doi.org/10.1016/j.enggeo.2017.02.002

    Article  Google Scholar 

  • Zhu H, Zhang LM, Xiao T (2019) Evaluating stability of anisotropically deposited soil slopes. Can Geotech J 56(5):753–760. https://doi.org/10.1139/cgj-2018-0210

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the São José Municipality Civil Defense, UFRGS, and CAPES.

Funding

The National Council for Scientific and Technological Development (CNPq) provided research grant (476360/2012–9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Heidemann.

Additional information

Highlights

• Both soils presented fragmented structure and cataclastic texture.

• The soil formed near to the fault is more altered, porous, and plastic but less permeable.

• Under 1-D loading the structure of RR soil yields at lower stress than BR soil.

• BR soil has lower peak friction angle than most residual soils from granitic rocks.

• The hyperbolic model can predict the triaxial stress-strain behavior for both soils.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidemann, M., Bressani, L.A. & Flores, J.A. Influence of faults on alteration, mineralogy, and geotechnical behavior of granitic residual soils. Bull Eng Geol Environ 80, 7051–7068 (2021). https://doi.org/10.1007/s10064-021-02351-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-021-02351-x

Keywords

Navigation