Skip to main content

Advertisement

Log in

Isolation and characterization of marine bioluminescent bacteria for toxicity bioassays and biotechnological applications

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Toxic heavy metals pollution posed severe health hazards to the environment and biodiversity. Therefore, the development of rapid and non-invasive bioassays is in the race to monitor toxic chemicals using novel approaches. This study isolated and characterized an intense blue luminescence-producing marine bacteria, Vibrio campbellii STF1, for biosensing applications. Species-level identification of this strain was confirmed based on various phenotypic tests and multilocus sequence approach using 16s rRNA, toxR, and luxA gene sequence analysis. Fatty acid methyl ester analysis revealed the presence of three predominant fatty acids C15:0 anteiso (21.73%), C17:0 anteiso (11.27%), and C19:0 anteiso (9.08%) in STF1. Luciferase enzyme from V. campbellii STF1 was extracted, partially purified, and molecular masses (alpha subunit 40 kDa and beta subunit 37 kDa) were determined by SDS-PAGE gel for in vivo assays. MALDI-TOF-MS analysis of V. campbellii cells’ protein extracts showed distinct mass spectral peaks at m/z of 2615, 3948, and 4232 da. V. campbellii STF1 is resistant to heavy metal lead, while other metals such as cadmium, copper, and mercury inhibited its growth and luminescence. Crude ethyl acetate extraction of V. campbellii demonstrated antibacterial activity against Shigella dysenteriae type 5 with a maximum inhibition zone of 27.0±1.0 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wilson T, Hastings JW (2013) Bioluminescence: living lights, lights for living. Harvard University Press

  2. Dunlap PV, Urbanczyk H (2013) Luminous bacteria. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes, 4th edn. Springer, Berlin, Heidelberg, pp 495–528

    Chapter  Google Scholar 

  3. Ramesh CH, Mohanraju R (2017) Genetic diversity of bioluminescent bacteria in diverse marine niches. Indian J Mar Sci 46(10):2054–2062

    Google Scholar 

  4. Dunlap PV (2014) Biochemistry and genetics of bacterial bioluminescence. In: Thouand G, Marks R (eds) Bioluminescence: Fundamentals and Applications in Biotechnology, vol 1. Springer-Verlag. Berlin, Heidelberg, pp 37–64

    Chapter  Google Scholar 

  5. Ramesh CH, Mohanraju R, Murthy KN, Karthick P, Narayana S (2014) Impact of light, temperature, salinity and glycerol on the intensity of luminescence and growth of marine bioluminescent bacteria Vibrio campbellii (strain STF1). Curr Sci 106(4):511–513

    CAS  Google Scholar 

  6. Ramesh CH (2016) Studies on marine bioluminescent bacteria from Andaman Islands. PhD Thesis. Pondicherry University, Port Blair Campus

  7. Shimomura O (2006) Bioluminescence: chemical principles and methods. World Scientific, Singapore

    Book  Google Scholar 

  8. Ramesh CH (2020) Terrestrial and marine bioluminescent organisms from the Indian subcontinent: a review. Environ Monit Assess 192:747

    Article  Google Scholar 

  9. Liu Z, Zhao J, Liang X, Li K, Xiao X, Zhu J, Sun Q, Liang Q (2012) Characterization of luminescent Vibrio campbellii LZ5 and its potential application in the detection of environmental heavy metals. Biotechnol Appl Biochem 59:405–410

    Article  CAS  PubMed  Google Scholar 

  10. Ramesh CH, Mohanraju R (2017) Antibacterial activity of marine bioluminescent bacteria. Indian J Mar Sci 46(10):2063–2074

    Google Scholar 

  11. Gomez-Gil B, Thompson CC, Matsumura Y et al (2014) Family Vibrionaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thonpson FL (eds) The Prokaryotes, 4th edn. Springer, Berlin, Heidelberg, pp 659–747

    Google Scholar 

  12. WHO (2004) Laboratory biosafety manual, 3rd edn. World Health Organization, Malta

    Google Scholar 

  13. Benson (2001) Microbiological applications lab manual, 8th edn The McGraw−Hill Companies, New York

  14. Noguerola I, Blanch AR (2008) Identification of Vibrio spp. with a set of dichotomous keys. J Appl Microbiol 105:175–185

    Article  CAS  PubMed  Google Scholar 

  15. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101, Newark

  16. Ahmad F, Wu H (2012) High-resolution MALDI-TOF mass spectrometry of bacterial proteins using a Tris-EDTA buffer approach. Microchim Acta 176:311–316

    Article  CAS  Google Scholar 

  17. Gellert G (2000) Sensitivity and significance of luminescent bacteria in chronic toxicity testing based on growth and bioluminescence. Ecotoxicol Environ Saf 45:87–91

    Article  CAS  PubMed  Google Scholar 

  18. Bauer AW, Kirby WMM, Sherris JS, Turk M (1966) Antibiotic susceptibility by standardized single disc method. Am J Clin Pathol 45:493–496

    Article  CAS  PubMed  Google Scholar 

  19. Hastings JW, Baldwin TO, Nicoli MZ (1978) Bacterial luciferase: assay, purification and properties. Methods Enzymol 57:135–152

    Article  CAS  Google Scholar 

  20. Wietz M, Mansson M, Gotfredsen CH, Larsen TO (2010) Antibacterial compounds from marine Vibrionaceae isolated on a global expedition. Mar Drugs 8:2946–2960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nishiguchi MK, Doukakis P, Egan M et al (2002) DNA isolation procedure. In: DeSalle R, Giribet G, Wheeler W (eds) Methods and tools in biosciences and medicine techniques in molecular systematics and evolution. Birkhäuser, Basel, pp 249–287

    Google Scholar 

  22. Wimpee C, Nadeau TL, Nealson K (1991) Development of species-specific hybridization probes for marine luminous bacteria by using in vitro DNA amplification. Appl Environ Microbiol 57:1319–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pascual J, Macian MC, Arahal DR, Garay E, Pujalte MJ (2010) Multilocus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR genes. Int J Syst Evol Microbiol 60:154–165

    Article  CAS  PubMed  Google Scholar 

  24. Gontcharova V, Youn E, Wolcott RD, Hollister EB, Gentry TJ, Dowd SE (2010) Black box chimera check (B2C2): a windows-based software for batch depletion of chimeras from bacterial 16S rRNA gene datasets. Open Microbiol J 4:47–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Z, Lin B, Mostaghim A et al (2013) Vibrio campbellii hmgA-mediated pyomelanization impairs quorum sensing, virulence, and cellular fitness. Front Microbiol 4:1–11

    Google Scholar 

  27. Ulitzur S, Hastings JW (1979) Evidence for tetradecanal as the natural aldehyde in bacterial bioluminescence. PNAS. 76:265–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang L, Chen Y, Huang H, Huang Z, Chen H, Shao Z (2013) Isolation and identification of Vibrio campbellii as a bacterial pathogen for luminous vibriosis of Litopenaeus vannamei. Aquac Res 46:395–404

    Article  Google Scholar 

Download references

Acknowledgments

Ramesh thanks the Department of Science and Technology, New Delhi, for providing the INSPIRE fellowship DST/IF120230/2012/280. This is CSIR-NIO’s contribution: 6767.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chatragadda Ramesh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Responsible Editor: Inês Conceição Roberto

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1626 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, C., Mohanraju, R. Isolation and characterization of marine bioluminescent bacteria for toxicity bioassays and biotechnological applications. Braz J Microbiol 52, 1191–1199 (2021). https://doi.org/10.1007/s42770-021-00471-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00471-w

Keywords

Navigation