Skip to main content
Log in

Influence of pre-treatments and anaerobic co-digestion of slaughterhouse waste with vegetable, fruit and flower market wastes for enhanced methane production

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Considerable amounts of slaughterhouse wastes (SHW) are generated in Indian urban centres causing serious environmental issues that demand effective treatment and disposal. The present study evaluates the effect of pasteurization (70 °C for 1 h) and extrusion pre-treatment on pathogen removal and methane production from SHW in anaerobic mono- and co-digestion with mixed vegetable, fruit and flower market wastes (VMW) under controlled batch anaerobic digestion (AD) tests. The complete destruction of pathogen was observed in post-pasteurized SHW, whereas the post-extruded SHW showed significant reduction (p < 0.05) in pathogen concentration (with a Salmonella count of 29.3 × 103 CFUs/g). The results of AD test revealed that the maximum specific methane yield (SMY) of 273.2 mLN/g oDM was obtained by anaerobic co-digestion of SHW:VMW in 1:3 proportion. Further enhancement in the SMY was obtained with extrusion pre-treatment of SHW (SHWE) by 11.5% (i.e. 304.8 mLN/g oDM) in 1:3 proportion of SHWE:VMW. Modified Gompertz and logistics models fitted the kinetic data of AD process well. Results confirmed that the proposed extrusion pre-treatment of SHW coupled with anaerobic co-digestion improved the oDM reduction, methane potentials and pathogen removal, thereby making it a suitable pre-treatment during anaerobic co-treatment of SHW with VMW from centralized wholesale markets from urban centres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not Applicable.

Abbreviations

AD:

Anaerobic digestion

ADF:

Acid detergent fibre

BMP:

Bio-methane potential

C/N:

Ratio carbon/nitrogen

CFUs:

Colony-forming units

DM:

Dry matter

GDP:

Gross domestic product

KWMC:

Koyambedu Wholesale Market Complex

LCFA:

Long-chain fatty acids

MNRE:

Ministry of New and Renewable Energy

MSW:

Municipal solid waste

NDF:

Neutral detergent fibre

NfE:

Nitrogen free extract

oDM:

Organic dry matter

RC:

Ruminal contents

SHW:

Slaughterhouse wastes

SHWE:

Extruded slaughterhouse wastes

SHWP:

Pasteurized slaughterhouse wastes

SMY:

Specific methane yield

TBC:

Total bacteria count

VFA:

Volatile fatty acids

VMW:

Vegetable, fruit and flower market wastes

OLR:

Organic loading rate

CHP:

Combined heat and power

References

  1. World Bank Population data (2019) Retrieved from: https://data.worldbank.org/country/india. Accessed 19 Feb 2019

  2. World Atlas Data (2018) India – CO2 emissions data per capita. https://knoema.com/atlas/India/CO2-emissions-per-capita. Accessed on 16 Apr 2020

  3. Singh CK, Kumar A, Roy SS (2018) Quantitative analysis of the methane gas emissions from municipal solid waste in India. Sci Rep 8(2913):1–8. https://doi.org/10.1038/s41598-018-21326-9

    Article  Google Scholar 

  4. Ministry of New and Renewable Energy (MNRE) (2018) Retrieved from: http://www.indiaenvironmentportal.org.in/files/file/GENERATION%20OF%20SOLID%20WASTE.pdf Accessed 19 Feb 2019

  5. Food and Agricultural Organisation (FAO) (2016) Leading producers of fresh vegetables worldwide in 2014 (in million metric tons). Retrieved from: http://faostat3.fao.org. Accessed 16 Mar 2017

  6. Central Pollution Control Board (CPCB) (2017) Revised Comprehensive Industry Document on Slaughter Houses. Ministry of Environment, Forest and Climate Change, Government of India. October 2017. Retrieved from: http://cpcb.nic.in/openpdffile.php?id=TGF0ZXN0RmLsZS8xNzVfMTUxMTI2NDE0MV9tZWRpYXBob3RvODkzOS5wZGY=. Accessed 19 Feb 2019

  7. U.S. Department of Agriculture (USDA) (2001) Livestock slaughter 2000 summary. National Agricultural Statistics Service. Mt An 1–2–1 (01a), Washington, DC. (DCN 00183)

  8. Astals S, Batstone DJ, Mata-Alvarez J, Jensen PD (2014) Identification of synergistic impacts during anaerobic co-digestion of organic wastes. Bioresource Technol 169:421–427. https://doi.org/10.1016/j.biortech.2014.07.024

    Article  Google Scholar 

  9. Jayathilakan K, Sultana K, Radhakrishna K, Bawa AS (2012) Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. J Food Sci Technol 49:278–293. https://doi.org/10.1007/s13197-011-0290-7

    Article  Google Scholar 

  10. Edström M, Nordberg Å, Thyselius L (2003) Anaerobic treatment of animal byproducts from slaughterhouses at laboratory and pilot scale. Appl Biochem Biotechnol 109:127–138. https://doi.org/10.1385/ABAB:109:1-3:127

    Article  Google Scholar 

  11. BREF (2005) Integrated Pollution Prevention and Control, Reference Document on Best Available Techniques in the Slaughterhouses and Anima By-products Industries (https://eippcb.jrc.ec.europa.eu/reference/BREF/sa_bref_0505.pdf)

  12. Cuetos MJ, Gomez X, Otero M, Moran A (2008) Anaerobic digestion of slaughterhouse waste (SHW) at laboratory scale: influence of co-digestion with the organic fraction of municipal solid waste (OFMSW). Biochem Eng J 40:99–106. https://doi.org/10.1016/j.bej.2007.11.019

    Article  Google Scholar 

  13. Buendia IM, Fernandez FJ, Villasenor J, Rodriguez L (2009) Feasibility of anaerobic co- digestion as a treatment option of meat industry wastes. Bioresource Technol 100:1903–1909. https://doi.org/10.1016/j.biortech.2008.10.013

    Article  Google Scholar 

  14. Ware A, Power N (2016) What is the effect of mandatory pasteurisation on the biogas transformation of solid slaughterhouse wastes. Waste Manag 48:503–512. https://doi.org/10.1016/j.wasman.2015.10.013

    Article  Google Scholar 

  15. Salminen E, Rintala J (2002) Anaerobic digestion of organic solid poultry slaughterhouse waste – a review. Bioresource Technol 83:13–26. https://doi.org/10.1016/S0960-8524(01)00199-7

    Article  Google Scholar 

  16. Palatsi J, Viñas M, Guivernau M, Fernandez B, Flotats X (2011) Anaerobic digestion of slaughterhouse waste: main process limitations and microbial community interactions. Bioresource Technol 102:2219–2227. https://doi.org/10.1016/j.biortech.2010.09.121

    Article  Google Scholar 

  17. Alvarez R, Riden G (2008) Semi-continuous co-digestion of solid slaughterhouse waste, manure, fruit, vegetable waste. Renew Energy 33:736–734. https://doi.org/10.1016/j.renene.2007.05.001

    Article  Google Scholar 

  18. Rosenwinkel K, Kroiss H, Dichtl N, Seyfried C, Weiland P (2015) Anaerobtechnik - Abwasser-, Schlamm- und Reststoffbehandlung, Biogasgewinnung. Berlin Heidelberg: Springer Verlag

  19. Hanaki K, Matsuo T, Nagase M (1981) Mechanism of inhibition caused by long-chain fatty acids in anaerobic digestion process. Biotechnol Bioeng 23:1591–1610. https://doi.org/10.1002/bit.260230717

    Article  Google Scholar 

  20. Salminen EA, Rintala JA (2002) Semi-continuous anaerobic digestion of solid poultry slaughterhouse waste: effect of hydraulic retention time and loading. Water Res 36:3175–3182. https://doi.org/10.1016/s0043-1354(02)00010-6

    Article  Google Scholar 

  21. Masse L, Massé DI, Kennedy KJ, Chou SP (2002) Neutral fat hydrolysis and long-chain fatty acid oxidation during anaerobic digestion of slaughterhouse wastewater. Biotechnol Bioeng 79:43–52. https://doi.org/10.1002/bit.10284

    Article  Google Scholar 

  22. Weichgrebe D (2015) Kompendium Biogas. Veröffentlichungen des Institutes für Siedlungswasserwirtschaft und Abfalltechnik der Leibniz Universität Hannover. Habilitationsschrift. Heft 155

  23. Rosenwinkel K-H, Meyer H (1999) Anaerobic treatment of slaughterhouse residues in municipal digesters. Water Sci Technol 40:101–111. https://doi.org/10.1016/S0273-1223(99)00369-8

    Article  Google Scholar 

  24. Mata-Alvarez J, Mase S, Llabres P (2000) Anaerobic digestion of organic solid waste An overview of research achievements and perspectives. Bioresource Technol 74:3–16. https://doi.org/10.1016/S0960-8524(00)00023-7

    Article  Google Scholar 

  25. Luste S, Luostarinen S, Sillanpaa M (2009) Effect of pre-treatments on hydrolysis and methane production potentials of by-products from meat-processing industry. J Hazard Mater 164:247–255. https://doi.org/10.1016/j.jhazmat.2008.08.002

    Article  Google Scholar 

  26. Mozhiarasi V, Speier CJ, Benish Rose PM, Mondal MM, Pragadeesh S, Weichgrebe D, Srinivasan SV (2019) Variations in generation of vegetable, fruit and flower market waste and effects on biogas production, exergy and energy contents. J Mater Cycles Waste Manag 21:713–728. https://doi.org/10.1007/s10163-019-00828-2

    Article  Google Scholar 

  27. Viswanath P, Devi S, Nand K (1992) Anaerobic digestion of fruit and vegetable processing wastes for biogas production. Bioresource Technol 40:43–48. https://doi.org/10.1016/0960-8524(92)90117-G

    Article  Google Scholar 

  28. Callaghan F, Wase D, Thayanithy K, Forster C (2002) Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass Bioenergy 27:71–77. https://doi.org/10.1016/S0961-9534(01)00057-5

    Article  Google Scholar 

  29. Murto M, Bjoernsson L, Mattiasson B (2004) Impact of food industrial waste on anaerobic codigestion of sewage sludge and pig manure. J Environ Manag 70:101–107. https://doi.org/10.1016/j.jenvman.2003.11.001

    Article  Google Scholar 

  30. Saboor A, Khan S, Shah A, Hasan F, Khan H, Badshah M (2017) Enhancement of biomethane production from cattle manure with codigestion of dilute acid pretreated lignocellulosic biomass. Int J Green Energy 14:632–637. https://doi.org/10.1080/15435075.2017.1313740

    Article  Google Scholar 

  31. Hansen H, Angelidaki I, Ahring B (1996) Anaerobic digestion of swine manure: inhibition by ammonia. Water Res 32:5–12. https://doi.org/10.1016/S0043-1354(97)00201-7

    Article  Google Scholar 

  32. Kacprzak A, Krystel L, Ledakowicz S (2010) Co-digestion of agricultural and industrial wastes. Chem Papers 64:121–131. https://doi.org/10.2478/s11696-009-0108-5

    Article  Google Scholar 

  33. Yenigun O, Demirel B (2013) Ammonia inhibition in anaerobic digestion: a review. Process Biochem 48:901–911. https://doi.org/10.1016/j.procbio.2013.04.012

    Article  Google Scholar 

  34. Chen JL, Ortiz R, Steele T, Stuckey D (2014) Toxicants inhibiting anaerobic digestion: a review. Biotechnol Adv 32:1523–1534. https://doi.org/10.1016/j.biotechadv.2014.10.005

    Article  Google Scholar 

  35. Kameswari B, Chitra K, Umamaheswari B, Thanasekaran K (2014) Enhancement of biogas generation during co-digestion of tannery solid wastes through optimization of mix proportions of substrates. Clean Technol Environ Policy 16:1067–1080. https://doi.org/10.1007/s10098-013-0706-3

    Article  Google Scholar 

  36. Almomani F, Shawaqfah M, Bhosale RR, Kumar A, Khraisheh MAM (2017) Intermediate ozonation to enhance biogas production in batch and continuous systems using animal dung and agricultural waste. Int Biodeterior Biodegradation 119:176–187. https://doi.org/10.1016/j.ibiod.2016.11.008

    Article  Google Scholar 

  37. Porselvam S, Soundara Vishal N, Srinivasan SV (2017) Enhanced biogas yield by thermo-alkali solubilization followed by co-digestion of intestine waste from slaughterhouse with food waste. 3 Biotech 7(5):1–10. https://doi.org/10.1007/s13205-017-0936-x

    Article  Google Scholar 

  38. Almomani F, Bhosale RR (2020) Enhancing the production of biogas through anaerobic co-digestion of agricultural waste and chemical pre-treatments. Chemosphere 255:126805. https://doi.org/10.1016/j.chemosphere.2020.126805

    Article  Google Scholar 

  39. European Parliament and the Council of the European Union (2002) Regulation (EC) No 1774/2002 of the European parliament and of the council of 3 October 2002 laying down health rules concerning animal by-products not intended for human consumption. Brussels, Belgium: European Parliament and the Council of the European Union (39)

  40. Franke-Whittle IH, Insam H (2013) Treatment alternatives of slaughterhouse wastes, and their effect on the inactivation of different pathogens: a review. Crit Rev Microbiol 39:139–151. https://doi.org/10.3109/1040841X.2012.694410

    Article  Google Scholar 

  41. Manyi-Loh CE, Mamphweli SN, Meyer EL, Makaka G, Simon M, Okoh A (2016) An overview of the control of bacterial pathogens in cattle manure. Int J Environ Res Public Health 13:843. https://doi.org/10.3390/ijerph13090843

    Article  Google Scholar 

  42. Bell RL, Jarvis KG, Ottesen AR, McFarland MA, Brown EW (2016) Recent and emerging innovations in Salmonella detection: a food and environmental perspective. Microbial Biotechnol 9:279–292. https://doi.org/10.1111/1751-7915.12359

    Article  Google Scholar 

  43. Sahlström L (2003) A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresource Technol 87:161–166. https://doi.org/10.1016/S0960-8524(02)00168-2.(43)

    Article  Google Scholar 

  44. Liu X, Lendormi T, Lanoisellé J-L (2018) A review of hygienization technology of biowastes for anaerobic digestion: effect on pathogen inactivation and methane production. Chem Eng Trans 70:529–534. https://doi.org/10.3303/CET1870089

    Article  Google Scholar 

  45. Kucharska K, Rybarczyk P, Hołowacz I, Łukajtis R, Glinka M, Kamiński M (2018) Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 23(11):2937. https://doi.org/10.3390/molecules23112937

    Article  Google Scholar 

  46. Izumi K, Okishio Y, Nagao N, Niwa C, Yamamoto S, Toda T (2010) Effects of particle size on anaerobic digestion of food waste. Int Biodeterior Biodegradation 64(7):601–608. https://doi.org/10.1016/j.ibiod.2010.06.013

    Article  Google Scholar 

  47. Lehmann T (2009) Errichtung einer Biogas- u. Biobrennstofferzeugungsanlage- Demonstrationsvorhaben, Abschlussbericht K II b1 – 001333, Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Deutschland.(https://www.umweltinnovationsprogramm.de/sites/default/files/benutzer/36/dokumente/lehmann_maschinenbau_abschlussbericht_k_ii_b1_-_001333_141.pdf). Accessed 20 Oct 2019

  48. Camire ME (1998) Chemical changes during extrusion cooking. Process-Induced Chem Changes Food 109–121. https://doi.org/10.1007/978-1-4899-1925-0_11

  49. Pilarski K, Pilarska AA, Witaszek K, Dworecki Z, Żelaziński T, Ekielski A, Makowska A, Michniewicz J (2016) The impact of extrusion on the biogas and biomethane yield of plant substrates. J Ecol Eng 17:264–272. https://doi.org/10.12911/22998993/64563

    Article  Google Scholar 

  50. Wahid R, Hjorth M, Kristensen S, Møller HB (2015) Extrusion as pretreatment for boosting methane production: effect of screw configurations. Energy Fuels 29(7):4030–4037. https://doi.org/10.1021/acs.energyfuels.5b00191

    Article  Google Scholar 

  51. Menardo S, Cacciatore V, Balsari P (2015) Batch and continuous biogas production arising from feed varying in rice straw volumes following pre-treatment with extrusion. Bioresource Technol 180:154–161. https://doi.org/10.1016/j.biortech.2014.12.104

    Article  Google Scholar 

  52. Panepinto D, Genon G (2016) Analysis of the extrusion as a pretreatment for the anaerobic digestion process. Ind Crops Prod 83:206–212. https://doi.org/10.1016/j.indcrop.2015.12.044

    Article  Google Scholar 

  53. Kozłowski K, Lewicki A, Czekała W, Wójtowicz A, Kupryaniuk K, Dróżdż D (2019) Extrusion pretreatment of maize straw - case study for a Polish biogas plants. Int Agrophys 33(4):527–535. https://doi.org/10.31545/intagr/113548

    Article  Google Scholar 

  54. Kupryaniuk K, Oniszczuk T, Combrzynski M, Czekała W, Matwijczuk A (2020) The influence of corn straw extrusion pretreatment parameters on methane fermentation performance. Materials 13(3003):1–16. https://doi.org/10.3390/ma13133003

    Article  Google Scholar 

  55. World population review (2019) Chennai population 2019. http://worldpopulationreview.com/world-cities/chennai-population/. Accessed 19 Jul 2019

  56. Greater Chennai Corporation (2019) Solid Waste Management. Retrieved from: http://www.chennaicorporation.gov.in/departments/solid-waste-management/index.htm. Accessed 19 Jul 2019

  57. Mozhiarasi V, Raghul R, Speier CJ, Benish Rose PM, Weichgrebe D, Srinivasan SV (2019) Compositional analysis of major organic fractions of Municipal Solid waste generated from Chennai. In Sadhan Kumar Ghosh. Sustainable Waste Management: Policies and Case Studies (pp. 143–152). Singapore: Springer. https://doi.org/10.1007/978-981-13-7071-7_13

  58. Murugesan V, Amarnath J (2015) Control of greenhouse gas emissions by energy recovery from the organic fraction of municipal solid waste through bio-methanation process. Int J ChemTech Res 8:1168–1174

    Google Scholar 

  59. Jensen PD, Mehta CM, Carney C, Batstone DJ (2016) Recovery of energy and nutrient resources from cattle paunch waste using temperature phased anaerobic digestion. Waste Manag 51:72–80. https://doi.org/10.1016/j.wasman.2016.02.039

    Article  Google Scholar 

  60. Chukwuma EC, Chukwuma GO, Orakwe LC, Odoh CC (2013) Mesophilic Co-digestion of cattle paunch with poultry droppings: mixture effect assessment on biogas production potentials. Nigerian J Technol 32:556–560

    Google Scholar 

  61. LAGA (2016) LAGA-MethodensammLung – Abfalluntersuchung. Version 3.0. Stand: 14. Oktober 2016.Bund/Länder-Arbeitsge- meinschaft Abfall

  62. Weichgrebe D, Speier C, Mondal M (2017) Scientific approach for municipal solid waste characterization. In: Goel S (ed) Advances in solid and hazardous waste management, 1st edn. New Delhi: Capital Publishing Company, 63–96. https://doi.org/10.1007/978-3-319-57076-1_4

  63. LAGA (ed.) (2001) LAGA PN 98, Richtlinie für das Vorgehen bei physikalischen, chemischen und biologischen Untersuchungen im Zusammenhang mit Verwertung/Beseitigung [Guideline on the procedure to conduct physical, chemical and biological analyses in connection with recovery/disposal of waste], Bund/Lander-Arbeitsgemeinschaft-Abfall, Kiel

  64. VDI- Guideline 4630 (2006) Fermentation of organic materials. Characterization of substrate, sampling, collection of material data, fermentation tests, Beuth Verlag GmbH

  65. APHA (1998) Standard methods for the examination of water & wastewater. American Public Health Association, Washington DC

    Google Scholar 

  66. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  Google Scholar 

  67. Frings CS, Dunn RT (1970) A colorimetric method for determination of total serum lipids by the sulpho-phospho-vanillin reaction. Am J Clin Pathol 53:89–91. https://doi.org/10.1093/ajcp/53.1.89

    Article  Google Scholar 

  68. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugar S and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/acs.energyfuels.9b01089

    Article  Google Scholar 

  69. Dilallo R, Albertson OE (1961) Volatile acids by direct titration. J Water Pollut Control Fed 33:356–365

    Google Scholar 

  70. ASTM (2014) Standard test methods for determination of carbon, hydrogen and nitrogen in analysis samples of coal and carbon in analysis samples of coal and coke. ASTM D5373. West Conshohocken: ASTM International

  71. Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

    Article  Google Scholar 

  72. Food Safety and Standards Authority Of India (FSSAI) (2012) Manual on method of Microbiological Testing. Retrieved from: https://old.fssai.gov.in/Portals/0/Pdf/15Manuals/MICROBIOLOGY%20MANUAL.pdf. Accessed on 29 Aug 2019

  73. Hahne E (2010) Technische Thermodynamik: Einführung und Anwendung. Oldenbourg, Boston (ISBN: 3486592319)

  74. Abudi ZN, Hu Z, Sun N, Xiao B, Rajaa N, Liu C, Guo D (2016) Batch anaerobic co-digestion of OFMSW (organic fraction of municipal solid waste), TWAS (thickened waste activated sludge) and RS (rice straw): influence of TWAS and RS pre-treatment and mixing ratio. Energy 107:131–140. https://doi.org/10.1016/j.energy.2016.03.141

    Article  Google Scholar 

  75. Duan N, Ran X, Li R, Kougias P, Zhang Y, Lin C, Liu H (2018) Performance evaluation of mesophilic anaerobic digestion of chicken manure with algal digestate. Energies 11:1829. https://doi.org/10.3390/en11071829

    Article  Google Scholar 

  76. Li P, Li W, Sun M, Xu X, Zhang B, Sun Y (2018) Evaluation of biochemical methane potential and kinetics on the anaerobic digestion of vegetable crop residues. Energies 12:26. https://doi.org/10.3390/en12010026

    Article  Google Scholar 

  77. Dioha IJ, Ikeme CH, Nafi’u T, Soba NI, Yusuf MBS (2013) Effect of carbon to nitrogen ration on biogas production. Int Res J Nat Sci 1:1–10

    Google Scholar 

  78. Hjorth M, Gränitz K, Adamsen APS, Møller HB (2011) Extrusion as a pre-treatment to increase biogas production. Bioresource Technol 102:4989–4994. https://doi.org/10.1016/j.biortech.2010.11.128

    Article  Google Scholar 

  79. Sharma VK, Testa C, Cornacchia G, Lastella G, Farina R (1999) Anaerobic digestion of semi-solid organic waste available from orthofruit market: preliminary experimental results. Energy Convers Manag 40:287–304. https://doi.org/10.1016/S0196-8904(98)00106-X

    Article  Google Scholar 

  80. Bianchini A, Stratton J, Weier S, Hartter T, Plattner B, Rokey G, Hertzel G, Gompa L, Martinez B, Eskridge KM (2012) Validation of extrusion as a killing step for Enterococcus faecium in a balanced carbohydrate-protein meal by using a response surface design. J Food Prot 75:1646–1653. https://doi.org/10.4315/0362-028x.jfp-12-085

    Article  Google Scholar 

  81. Kelley TR, Walker PM (2000) Bacterial concentration reduction in swine waste amended livestock feed using a single-screw dry-extrusion process. Bioresource Technol 75(3):189–195. https://doi.org/10.1016/S0960-8524(00)00063-8

    Article  Google Scholar 

  82. Walker P and Kelley T (1997) Selected fractionated composition and microbiological analysis of institutional food waste, pre- and post- extrusion, Final Report, Illinois Council on Food and Agricultural Research (CFAR)

  83. Said N (1989) Dry-extrusion ± a solution to the wet waste problems. InstaPro Update. InstaPro International, Des Moines, IA

  84. Nkemka VN, Marchbank DH, Hao X (2015) Anaerobic digestion of paunch in a CSTR for renewable energy production and nutrient mineralization. Waste Manag 43:123–129. https://doi.org/10.1016/j.wasman.2015.05.016

    Article  Google Scholar 

  85. Pertiwiningrum A, Susilowati E, Rochijan, Fitriyanto NA, Soeherman Y, Habibi MF (2017) Potential test on utilization of cow’s rumen fluid to increase biogas production rate and methane concentration in biogas. Asian J Anim Sci 11:82-87. https://doi.org/10.3923/ajas.2017.82.87

  86. Sádecká J, Polovka M, Kolek E, Belajová E, Tobolková B, Daško L, Durec J (2014) Orange juice with pulp: impact of pasteurization and storage on flavour, polyphenols, ascorbic acid and antioxidant activity. J Food Nutr Res 53:371–388. ISSN 1336–8672

  87. Budiyono, Widiasa IN, Johari S, Sunarso (2010) The influence of total solid contents on biogas yield from cattle manure using rumen fluid inoculum. Energy Res J 1:6-11. https://doi.org/10.3844/erjsp.2010.6.11

  88. Udochukwu U, Ehinmitan E, Dave-Omoregie AO (2016) Microbial waste conversion and biogas production from rumen content of cow and the intestinal waste content of pigs. Nigerian J Microbiol 30(2):3395–3400

    Google Scholar 

  89. Sunarso, Johari S, Widiasa IN, Budiyono (2010) The effect of feed to inoculums ratio on biogas production rate from cattle manure using rumen fluid as inoculums. Int J Sci Eng 1(2):41-45

  90. Ungerfeld EM (2020) Metabolic hydrogen flows in rumen fermentation: principles and possibilities of interventions. Front Microbiol 11:589. https://doi.org/10.3389/fmicb.2020.00589

    Article  Google Scholar 

  91. Karunanithy C, Muthukumarappan K (2010) Influence of extruder temperature and screw speed on pre-treatment of corn stover while varying enzymes and their ratios. Appl Biochem Biotechnol 162:264–279. https://doi.org/10.1007/s12010-009-8757-y

    Article  Google Scholar 

  92. Zheng Y, Zhao J, Xu F, Li Y (2014) Pre-treatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53. https://doi.org/10.1016/j.pecs.2014.01.001

    Article  Google Scholar 

  93. Carotenuto C, Guarino G, Morrone B, Minale M (2016) Temperature and pH effect on methane production from buffalo manure anaerobic digestion. Int J Heat Technol 34(2):425–429. https://doi.org/10.18280/ijht.34S233

    Article  Google Scholar 

  94. Reungsang A, Pattra S, Sittijunda S (2012) Optimization of key factors affecting methane production from acidic effluent coming from the sugarcane juice hydrogen fermentation process. Energies 5(11):4746–4757. https://doi.org/10.3390/en5114746

    Article  Google Scholar 

  95. Cioabla A, Ionel I, Dumitrel GA, Popescu F (2012) Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues. Biotechnol Biofuels 5(1):1–9. https://doi.org/10.1186/1754-6834-5-39

    Article  Google Scholar 

  96. El Hadj TB, Astals S, Gali A, Mace S, Mata-Alvarez J (2009) Ammonia influence in anaerobic digestion of OFMSW. Water Sci Technol 59:1153–1158. https://doi.org/10.2166/wst.2009.100

    Article  Google Scholar 

  97. Angelidaki I, Ahring B (1994) Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Water Res 28:727–731. https://doi.org/10.1016/0043-1354(94)90153-8

    Article  Google Scholar 

  98. Luste S, Luostarinen S (2010) Anaerobic co-digestion of meat-processing by-products and sewage sludge – effect of hygienization and organic loading rate. Bioresource Technol 101(8):2657–2664. https://doi.org/10.1016/j.biortech.2009.10.071

    Article  Google Scholar 

  99. Li D, Liu S, Mi L, Li Z, Yuan Y, Yan Z (2015) Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and cow manure. Bioresource Technol 189:319–326

    Article  Google Scholar 

  100. Patinvoh RJ, Lundin M, Taherzadeh MJ, Horváth IS (2018) Dry anaerobic co-digestion of citrus wastes with keratin and lignocellulosic wastes: batch and continuous processes. Waste Biomass Valori 1-12. https://doi.org/10.1007/s12649-018-0447-y

  101. Shi X, Lin J, Zuo J, Li P, Li X, Guo X (2017) Effects of free ammonia on volatile fatty acid accumulation and process performance in the anaerobic digestion of two typical bio-wastes. J Environ Sci 55:49–57. https://doi.org/10.1016/j.jes.2016.07.006

    Article  Google Scholar 

  102. Cuetos MJ, Gómez X, Otero M, Morán A (2010) Anaerobic digestion and co-digestion of slaughterhouse waste (SHW): influence of heat and pressure pre-treatment in biogas yield. Waste Manag 30(10):1780–1789. https://doi.org/10.1016/j.wasman.2010.01.034

    Article  Google Scholar 

  103. Kafle GK, Bhattarai S, Kim SH, Chen L (2014) Effect of feed to microbe ratios on anaerobic digestion of Chinese cabbage waste under mesophilic and thermophilic conditions: biogas potential and kinetic study. J Environ Manag 133:293–301. https://doi.org/10.1016/j.jenvman.2013.12.006

    Article  Google Scholar 

  104. Sambusiti C, Monlau F, Ficara E, Carre re H, Malpei F (2013) A comparison of different pre-treatments to increase methane production from two agricultural substrates. Appl Energy 104:62e70

  105. Budiyono IS, Sumardiono S (2014) Kinetic model of biogas yield production from vinasse at various initial pH: comparison between modified Gompertz model and first order kinetic model. Res J Appl Sci Eng Technol 7(13):2798–2805. https://doi.org/10.19026/rjaset.7.602

    Article  Google Scholar 

  106. Kafle GK, Chen L (2016) Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste Manag 48:492–502. https://doi.org/10.1016/j.wasman.2015.10.021

    Article  Google Scholar 

  107. Ware A, Power N (2017) Modeling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions. Renew Energy 104:50–59. https://doi.org/10.1016/j.renene.2016.11.045

    Article  Google Scholar 

  108. Raposo F, Borja R, Martín MA, Martín A, De la Rubia MA, Rincón B (2009) Influence of inoculum–substrate ratio on the anaerobic digestion of sunflower oil cake in batch mode: process stability and kinetic evaluation. Chem Eng J 149:70–77. https://doi.org/10.1016/j.cej.2008.10.001

    Article  Google Scholar 

  109. Kafle GK, Kim SH (2013) Anaerobic treatment of apple waste with swine manure for biogas production: batch and continuous operation. Appl Energy 103:61–72. https://doi.org/10.1016/j.apenergy.2012.10.018

    Article  Google Scholar 

  110. Salehiyou AR, Sharifi M, Di Maria F, Zilouei H, Aghbashlo M (2019) Effect of substituting organic fraction of municipal solid waste with fruit and vegetable wastes on anaerobic digestion. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-019-00887-5

  111. Li Y, Jin Y, Li J, Li H, Yu Z (2016) Effects of thermal pre-treatment on the biomethane yield and hydrolysis rate of kitchen waste. Appl Energy 172:47–58. https://doi.org/10.1016/j.apenergy.2016.03.080

    Article  Google Scholar 

  112. Ware A, Power N (2016) Biogas from cattle slaughterhouse waste: energy recovery towards an energy self-sufficient industry in Ireland. Renew Energy 97:541–549. https://doi.org/10.1016/j.renene.2016.05.068

    Article  Google Scholar 

  113. Sowunmi A, Mamone RM, Bastidas-Oyanedel JR (2016) Biogas potential for electricity generation in the Emirate of Abu Dhabi. Biomass Conv Bioref 6:39–47. https://doi.org/10.1007/s13399-015-0182-6

    Article  Google Scholar 

  114. Alvarez R, Riera VH, Lidén G (2006) Batch co-digestion of manure, solid slaughterhouse waste, and fruit & vegetable waste. Rev Boliviana De QuíMica 23(1):62–70

    Google Scholar 

  115. Mozhiarasi V, Weichgrebe D, Srinivasan SV (2020) Enhancement of methane production from vegetable, fruit and flower market wastes using extrusion as pretreatment and kinetic modeling. Water Air Soil Pollut 231:126. https://doi.org/10.1007/s11270-020-04469-2

    Article  Google Scholar 

Download references

Acknowledgements

CSIR-CLRI communication no. 1575. This work was supported by the German Federal Ministry of Education and Research (BMBF) and the Indian Department of Science and Technology (DST) under the Indo-German Science and Technology Centre (IGSTC) (Grant Number 01DQ15007A) under the 2+2 Project ‘RESERVES—Resource and energy reliability by co-digestion of veg-market and slaughterhouse waste’. The authors thank the Director, Central Leather Research Institute (CLRI) for permitting to carry out the research study. The authors also acknowledge both German and Indian industrial partners (Lehmann-UMT GmbH, Germany and Ramky Enviro Engineers Ltd., India) of this project for their support.

Funding

Indo-German Science and Technology Centre (IGSTC) (Grant Number 01DQ15007A) under Department of Science and Technology (DST) and the German Federal Ministry of Education and Research (BMBF) for funding under the 2 + 2 Project ‘Resource and energy reliability by co-digestion of veg-market and slaughterhouse waste’.

Author information

Authors and Affiliations

Authors

Contributions

VM: conceptualization, methodology, formal analysis, investigation, data curation, original draft preparation, review and editing.

CJS: reviewing the results and manuscript.

BRPM: supporting for formal analysis.

DW: conceptualization, reviewing the results and manuscript, and funding acquisition.

SVS: conceptualization, supervision, project administration, reviewing results and the manuscript, and funding acquisition.

Corresponding author

Correspondence to Srinivasan Shanmugham Venkatachalam.

Ethics declarations

Ethics approval

Not Applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozhiarasi, V., Speier, C.J., Rose, P.M.B. et al. Influence of pre-treatments and anaerobic co-digestion of slaughterhouse waste with vegetable, fruit and flower market wastes for enhanced methane production. Biomass Conv. Bioref. 13, 7079–7096 (2023). https://doi.org/10.1007/s13399-021-01709-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01709-1

Keywords

Navigation