Skip to main content
Log in

Nonspecific Synthesis in the Reactions of Isothermal Nucleic Acid Amplification

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The review focuses on the main factors involved in the formation of nonspecific products in isothermal nucleic acid amplification, such as mispriming, ab initio DNA synthesis, and additional activities of DNA polymerases, and discusses approaches to prevent formation of such nonspecific products in LAMP, RPA, NASBA, RCA, SDA, LSDA, NDA, and EXPAR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

EXPAR:

exponential amplification reaction

LAMP:

loop-mediated isothermal amplification

NASBA:

nucleic acid sequence-based amplification

RCA:

rolling circle amplification

RPA:

recombinase polymerase amplification

SDA:

strand displacement amplification

SSB:

single-stranded DNA binding protein

References

  1. Craw, P., and Balachandran, W. (2012) Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review, Lab Chip, 12, 2469-2486, https://doi.org/10.1039/c2lc40100b.

    Article  CAS  PubMed  Google Scholar 

  2. Gill, P., and Ghaemi, A. (2008) Nucleic acid isothermal amplification technologies: a review, Nucleosides Nucleotides Nucleic Acids, 27, 224-243, https://doi.org/10.1080/15257770701845204.

    Article  CAS  PubMed  Google Scholar 

  3. Niemz, A., Ferguson, T. M., and Boyle, D. S. (2011) Point-of-care nucleic acid testing for infectious diseases, Trends Biotechnol., 29, 240-250, https://doi.org/10.1016/j.tibtech.2011.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Obande, G. A., and Banga Singh, K. K. (2020) Current and future perspectives on isothermal nucleic acid amplification technologies for diagnosing infections, Infect. Drug Resist., 13, 455-483, https://doi.org/10.2147/IDR.S217571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao, Y., Chen, F., Li, Q., Wang, L., and Fan, C. (2015) Isothermal amplification of nucleic acids, Chem. Rev., 115, 12491-12545, https://doi.org/10.1021/acs.chemrev.5b00428.

    Article  CAS  PubMed  Google Scholar 

  6. Bodulev, O. L., and Sakharov, I. Y. (2020) Isothermal nucleic acid amplification techniques and their use in bioanalysis, Biochemistry (Moscow), 85, 147-166, https://doi.org/10.1134/S0006297920020030.

    Article  CAS  Google Scholar 

  7. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., et al. (2000) Loop-mediated isothermal amplification of DNA, Nucleic Acids Res., 28, E63, https://doi.org/10.1093/nar/28.12.e63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rolando, J. C., Jue, E., Barlow, J. T., and Ismagilov, R. F. (2020) Real-time kinetics and high-resolution melt curves in single-molecule digital LAMP to differentiate and study specific and non-specific amplification, Nucleic Acids Res., 48, e42-e42, https://doi.org/10.1093/nar/gkaa099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schneider, L., Blakely, H., and Tripathi, A. (2019) Mathematical model to reduce loop mediated isothermal amplification (LAMP) false-positive diagnosis, Electrophoresis, 40, 2706-2717, https://doi.org/10.1002/elps.201900167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gao, X., Sun, B., and Guan, Y. (2019) Pullulan reduces the non-specific amplification of loop-mediated isothermal amplification (LAMP), Anal. Bioanal. Chem., 411, 1211-1218, https://doi.org/10.1007/s00216-018-1552-2.

    Article  CAS  PubMed  Google Scholar 

  11. Piepenburg, O., Williams, C. H., Stemple, D. L., and Armes, N. A. (2006) DNA detection using recombination proteins, PLoS Biol., 4, e204, https://doi.org/10.1371/journal.pbio.0040204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharma, N., Hoshika, S., Hutter, D., Bradley, K. M., and Benner, S. A. (2014) Recombinase-based isothermal amplification of nucleic acids with self-avoiding molecular recognition systems (SAMRS), ChemBioChem, 15, 2268-2274, https://doi.org/10.1002/cbic.201402250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lobato, I. M., and O’Sullivan, C. K. (2018) Recombinase polymerase amplification: basics, applications and recent advances, Trends Anal. Chem., 98, 19-35, https://doi.org/10.1016/j.trac.2017.10.015.

    Article  CAS  Google Scholar 

  14. Li, J., Macdonald, J., and von Stetten, F. (2019) Review: a comprehensive summary of a decade development of the recombinase polymerase amplification, Analyst, 144, 31-67, https://doi.org/10.1039/c8an01621f.

    Article  CAS  Google Scholar 

  15. James, A., and Macdonald, J. (2015) Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics, Expert Rev. Mol. Diagn., 15, 1475-1489, https://doi.org/10.1586/14737159.2015.1090877.

    Article  CAS  PubMed  Google Scholar 

  16. Higgins, M., Ravenhall, M., Ward, D., Phelan, J., Ibrahim, A., et al. (2018) PrimedRPA: primer design for recombinase polymerase amplification assays, Bioinformatics, 35, 682-684, https://doi.org/10.1093/bioinformatics/bty701.

    Article  CAS  PubMed Central  Google Scholar 

  17. Rohrman, B., and Richards-Kortum, R. (2015) Inhibition of recombinase polymerase amplification by background DNA: a lateral flow-based method for enriching target DNA, Anal. Chem., 87, 1963-1967, https://doi.org/10.1021/ac504365v.

    Article  CAS  PubMed  Google Scholar 

  18. Compton, J. (1991) Nucleic acid sequence-based amplification, Nature, 350, 91-92, https://doi.org/10.1038/350091a0.

    Article  CAS  PubMed  Google Scholar 

  19. Kievits, T., van Gemen, B., van Strijp, D., Schukkink, R., Dircks, M., et al. (1991) NASBA™ isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection, J. Virol. Methods, 35, 273-286, https://doi.org/10.1016/0166-0934(91)90069-C.

    Article  CAS  PubMed  Google Scholar 

  20. Morabito, K., Wiske, C., and Tripathi, C. W. A. (2013) Engineering insights for multiplexed real-time nucleic acid sequence-based amplification (NASBA): implications for design of point-of-care diagnostics, Mol. Diagn. Ther., 17, 185-192, https://doi.org/10.1007/s40291-013-0029-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Markham, N. R., and Zuker, M. (2005) DINAMelt web server for nucleic acid melting prediction, Nucleic Acids Res., 33, W577-W581, https://doi.org/10.1093/nar/gki591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heim, A., Grumbach, I. M., Zeuke, S., and Top, B. (1998) Highly sensitive detection of gene expression of an intronless gene: amplification of mRNA, but not genomic DNA by nucleic acid sequence based amplification (NASBA), Nucleic Acids Res., 26, 2250-2251, https://doi.org/10.1093/nar/26.9.2250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Polstra, A. M., Goudsmit, J., and Cornelissen, M. (2002) Development of real-time NASBA assays with molecular beacon detection to quantify mRNA coding for HHV-8 lytic and latent genes, BMC Infect. Dis., 2, 18, https://doi.org/10.1186/1471-2334-2-18.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Honsvall, B. K., and Robertson, L. J. (2017) From research lab to standard environmental analysis tool: will NASBA make the leap? Water Res., 109, 389-397, https://doi.org/10.1016/j.watres.2016.11.052.

    Article  CAS  PubMed  Google Scholar 

  25. Lizardi, P. M., Huang, X., Zhu, Z., Bray-Ward, P., Thomas, D. C., and Ward, D. C. (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplification, Nat. Genet., 19, 225-232, https://doi.org/10.1038/898.

    Article  CAS  PubMed  Google Scholar 

  26. Dean, F. B., Nelson, J. R., Giesler, T. L., and Lasken, R. S. (2001) Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification, Genome Res., 11, 1095-1099, https://doi.org/10.1101/gr.180501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dean, F. B., Hosono, S., Fang, L., Wu, X., Faruqi, A. F., et al. (2002) Comprehensive human genome amplification using multiple displacement amplification, Proc. Natl. Acad. Sci. USA, 99, 5261, https://doi.org/10.1073/pnas.082089499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brukner, I., Paquin, B., Belouchi, M., Labuda, D., and Krajinovic, M. (2005) Self-priming arrest by modified random oligonucleotides facilitates the quality control of whole genome amplification, Anal. Biochem., 339, 345-347, https://doi.org/10.1016/j.ab.2005.01.005.

    Article  CAS  PubMed  Google Scholar 

  29. Murakami, T., Sumaoka, J., and Komiyama, M. (2008) Sensitive isothermal detection of nucleic-acid sequence by primer generation – rolling circle amplification, Nucleic Acids Res., 37, e19-e19, https://doi.org/10.1093/nar/gkn1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Garafutdinov, R. R., Gilvanov, A. R., and Sakhabutdinova, A. R. (2020) The influence of reaction conditions on DNA multimerization during isothermal amplification with Bst exo− DNA polymerase, Appl. Biochem. Biotechnol., 190, 758-771, https://doi.org/10.1007/s12010-019-03127-6.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, G., Ding, X., Hu, J., Wu, W., Sun, J., and Mu, Y. (2017) Unusual isothermal multimerization and amplification by the strand-displacing DNA polymerases with reverse transcription activities, Sci. Rep., 7, 017-13324, https://doi.org/10.1038/s41598-017-13324-0.

    Article  CAS  Google Scholar 

  32. Garafutdinov, R. R., Sakhabutdinova, A. R., Kupryushkin, M. S., and Pyshnyi, D. V. (2020) Prevention of DNA multimerization using phosphoryl guanidine primers during isothermal amplification with Bst exo-DNA polymerase, Biochimie, 168, 259-267, https://doi.org/10.1016/j.biochi.2019.11.013.

    Article  CAS  PubMed  Google Scholar 

  33. Inoue, J., Shigemori, Y., and Mikawa, T. (2006) Improvements of rolling circle amplification (RCA) efficiency and accuracy using Thermus thermophilus SSB mutant protein, Nucleic Acids Res., 34, e69-e69, https://doi.org/10.1093/nar/gkl350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mikawa, T., Inoue, J., and Shigemori, Y. (2009) Single-stranded DNA binding protein facilitates specific enrichment of circular DNA molecules using rolling circle amplification, Anal. Biochem., 391, 81-84, https://doi.org/10.1016/j.ab.2009.05.013.

    Article  CAS  PubMed  Google Scholar 

  35. Walker, G. T., Little, M. C., Nadeau, J. G., and Shank, D. D. (1992) Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system, Proc. Natl. Acad. Sci. USA, 89, 392-396, https://doi.org/10.1073/pnas.89.1.392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chan, S.-H., Zhu, Z., Van Etten, J. L., and Xu, S.-Y. (2004) Cloning of CviPII nicking and modification system from chlorella virus NYs-1 and application of Nt.CviPII in random DNA amplification, Nucleic Acids Res., 32, 6187-6199, https://doi.org/10.1093/nar/gkh958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Van Ness, J., Van Ness, L. K., and Galas, D. J. (2003) Isothermal reactions for the amplification of oligonucleotides, Proc. Natl. Acad. Sci. USA, 100, 4504, https://doi.org/10.1073/pnas.0730811100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Joneja, A., and Huang, X. (2011) Linear nicking endonuclease-mediated strand-displacement DNA amplification, Anal. Biochem., 414, 58-69, https://doi.org/10.1016/j.ab.2011.02.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou, H., Xie, S.-J., Zhang, S.-B., Shen, G.-L., Yu, R.-Q., and Wu, Z.-S. (2013) Isothermal amplification system based on template-dependent extension, Chem. Commun., 49, 2448-2450, https://doi.org/10.1039/c3cc38358j.

    Article  CAS  Google Scholar 

  40. Shi, C., Liu, Q., Zhou, M., Zhao, H., Yang, T., and Ma, C. (2016) Nicking endonuclease-mediated isothermal exponential amplification for double-stranded DNA detection, Sens. Actuat. B. Chem., 222, 221-225, https://doi.org/10.1016/j.snb.2015.08.060.

    Article  CAS  Google Scholar 

  41. Abrosimova, L. A., Kisil, O. V., Romanova, E. A., Oretskaya, T. S., and Kubareva, E. A. (2019) Nicking endonucleases as unique tools for biotechnology and gene engineering, Russ. J. Bioorg. Chem., 45, 303-320, https://doi.org/10.1134/S1068162019050017.

    Article  CAS  Google Scholar 

  42. Walker, G. T., Fraiser, M. S., Schram, J. L., Little, M. C., Nadeau, J. G., and Malinowski, D. P. (1992) Strand displacement amplification – an isothermal, in vitro DNA amplification technique, Nucleic Acids Res., 20, 1691-1696, https://doi.org/10.1093/nar/20.7.1691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Spargo, C. A., Fraiser, M. S., Van Cleve, M., Wright, D. J., Nycz, C. M., et al. (1996) Detection of M. tuberculosis DNA using thermophilic strand displacement amplification, Mol. Cell. Probes, 10, 247-256, https://doi.org/10.1006/mcpr.1996.0034.

    Article  CAS  PubMed  Google Scholar 

  44. Nadeau, J. G., Pitner, J. B., Linn, C. P., Schram, J. L., Dean, C. H., and Nycz, C. M. (1999) Real-time, sequence-specific detection of nucleic acids during strand displacement amplification, Anal. Biochem., 276, 177-187, https://doi.org/10.1006/abio.1999.4350.

    Article  CAS  PubMed  Google Scholar 

  45. Ehses, S., Ackermann, J., and McCaskill, J. S. (2005) Optimization and design of oligonucleotide setup for strand displacement amplification, J. Biochem. Biophys. Methods, 63, 170-186, https://doi.org/10.1016/j.jbbm.2005.04.005.

    Article  CAS  PubMed  Google Scholar 

  46. Tan, E., Erwin, B., Dames, S., Ferguson, T., Buechel, M., et al. (2008) Specific versus nonspecific isothermal DNA amplification through thermophilic polymerase and nicking enzyme activities, Biochemistry, 47, 9987-9999, https://doi.org/10.1021/bi800746p.

    Article  CAS  PubMed  Google Scholar 

  47. Reid, M. S., Paliwoda, R. E., Zhang, H., and Le, X. C. (2018) Reduction of background generated from template–template hybridizations in the exponential amplification reaction, Anal. Chem., 90, 11033-11039, https://doi.org/10.1021/acs.analchem.8b02788.

    Article  CAS  PubMed  Google Scholar 

  48. Little, M. C., Andrews, J., Moore, R., Bustos, S., Jones, L., et al. (1999) Strand displacement amplification and homogeneous real-time detection incorporated in a second-generation DNA probe system, BDProbeTecET, Clin. Chem., 45, 777-784, https://doi.org/10.1093/clinchem/45.6.777.

    Article  CAS  PubMed  Google Scholar 

  49. Zyrina, N. V., Artyukh, R. I., Svad’bina, I. V., Zheleznaya, L. A., and Matvienko, N. I. (2012) The effect of single-stranded DNA binding protein on template/primer independent DNA synthesis in the presence of nicking endonuclease Nt.BspD6I, Russ. J. Bioorg. Chem., 38, 171-176, https://doi.org/10.1134/S1068162012020161.

    Article  CAS  Google Scholar 

  50. He, Y., and Jiang, T. (2013) Nickase-dependent isothermal DNA amplification, Adv. Biosci. Biotechnol., 4, 539-542, https://doi.org/10.4236/abb.2013.44070.

    Article  Google Scholar 

  51. Menova, P., Raindlova, V., and Hocek, M. (2013) Scope and limitations of the nicking enzyme amplification reaction for the synthesis of base-modified oligonucleotides and primers for PCR, Bioconj. Chem., 24, 1081-1093, https://doi.org/10.1021/bc400149q.

    Article  CAS  Google Scholar 

  52. Urtel, G., Van Der Hofstadt, M., Galas, J.-C., and Estevez-Torres, A. (2019) rEXPAR: an isothermal amplification scheme that is robust to autocatalytic parasites, Biochemistry, 58, 2675-2681, https://doi.org/10.1021/acs.biochem.9b00063.

    Article  CAS  PubMed  Google Scholar 

  53. Zyrina, N. V., Antipova, V. N., and Zheleznaya, L. A. (2014) Ab initio synthesis by DNA polymerases, FEMS Microbiol. Lett., 351, 1-6, https://doi.org/10.1111/1574-6968.12326.

    Article  CAS  Google Scholar 

  54. Liang, X., Jensen, K., and Frank-Kamenetskii, M. D. (2004) Very efficient template/primer-independent DNA synthesis by thermophilic DNA polymerase in the presence of a thermophilic restriction endonuclease, Biochemistry, 43, 13459-13466, https://doi.org/10.1021/bi0489614.

    Article  CAS  PubMed  Google Scholar 

  55. Zyrina, N. V., Zheleznaya, L. A., Dvoretsky, E. V., Vasiliev, V. D., Chernov, A., and Matvienko, N. I. (2007) N.BspD6I DNA nickase strongly stimulates template-independent synthesis of non-palindromic repetitive DNA by Bst DNA polymerase, Biol. Chem., 388, 367-372, https://doi.org/10.1515/BC.2007.043.

    Article  CAS  PubMed  Google Scholar 

  56. Antipova, V. N., Zheleznaya, L. A., and Zyrina, N. V. (2014) Ab initio DNA synthesis by Bst polymerase in the presence of nicking endonucleases Nt.AlwI, Nb.BbvCI, and Nb.BsmI, FEMS Microbiol. Lett., 357, 144-150, https://doi.org/10.1111/1574-6968.12511.

    Article  CAS  PubMed  Google Scholar 

  57. Kaboev, O. K., and Luchkina, L. A. (2004) Template-free primer-independent DNA synthesis by bacterial DNA polymerases I using the DnaB protein from Escherichia coli, Dokl. Biochem. Biophys., 398, 265-267, https://doi.org/10.1023/b:dobi.0000046633.66624.58.

    Article  CAS  PubMed  Google Scholar 

  58. Beguin, P., Gill, S., Charpin, N., and Forterre, P. (2015) Synergistic template-free synthesis of dsDNA by Thermococcus nautili primase PolpTN2, DNA polymerase PolB, and pTN2 helicase, Extremophiles, 19, 69-76, https://doi.org/10.1007/s00792-014-0706-1.

    Article  CAS  PubMed  Google Scholar 

  59. Schachman, H. K., Adler, J., Radding, C. M., Lehman, I. R., and Kornberg, A. (1960) Enzymatic synthesis of deoxyribonucleic acid. VII. Synthesis of a polymer of deoxyadenylate and deoxythymidylate, J. Biol. Chem., 235, 3242-3249.

    Article  CAS  Google Scholar 

  60. Ogata, N., and Miura, T. (1997) Genetic information “created” by archaebacterial DNA polymerase, Biochem. J., 324 (Pt 2), 667-671, https://doi.org/10.1042/bj3240667.

    Article  Google Scholar 

  61. Ogata, N., and Miura, T. (1998) Creation of genetic information by DNA polymerase of the thermophilic bacterium Thermus thermophilus, Nucleic Acids Res., 26, 4657-4661, https://doi.org/10.1093/nar/26.20.4657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pavlov, A. R., Pavlova, N. V., Kozyavkin, S. A., and Slesarev, A. I. (2004) Recent developments in the optimization of thermostable DNA polymerases for efficient applications, Trends Biotechnol., 22, 253-260, https://doi.org/10.1016/j.tibtech.2004.02.011.

    Article  CAS  PubMed  Google Scholar 

  63. Shi, C., Shen, X., Niu, S., and Ma, C. (2015) Innate reverse transcriptase activity of DNA polymerase for isothermal RNA direct detection, J. Am. Chem. Soc., 137, 13804-13806, https://doi.org/10.1021/jacs.5b08144.

    Article  CAS  PubMed  Google Scholar 

  64. Krzywkowski, T., Kühnemund, M., Wu, D., and Nilsson, M. (2018) Limited reverse transcriptase activity of phi29 DNA polymerase, Nucleic Acids Res., 46, 3625-3632, https://doi.org/10.1093/nar/gky190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Garcia, P. B., Robledo, N. L., and Islas, A. L. (2004) Analysis of non-template-directed nucleotide addition and template switching by DNA polymerase, Biochemistry, 43, 16515-16524, https://doi.org/10.1021/bi0491853.

    Article  CAS  PubMed  Google Scholar 

  66. Que, H., Yan, X., Guo, B., Ma, H., Wang, T., et al. (2019) Terminal deoxynucleotidyl transferase and rolling circle amplification induced G-triplex formation: a label-free fluorescent strategy for DNA methyltransferase activity assay, Sens. Actuat. B Chem., 291, 394-400, https://doi.org/10.1016/j.snb.2019.04.091.

    Article  CAS  Google Scholar 

  67. Sinden, R. R., Potaman, V. N., Oussatcheva, E. A., Pearson, C. E., Lyubchenko, Y. L., and Shlyakhtenko, L. S. (2002) Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA, J. Biosci., 27, 53-65, https://doi.org/10.1007/BF02703683.

    Article  CAS  PubMed  Google Scholar 

  68. Canceill, D., Viguera, E., and Ehrlich, S. D. (1999) Replication slippage of different DNA polymerases is inversely related to their strand displacement efficiency, J. Biol. Chem., 274, 27481-27490, https://doi.org/10.1074/jbc.274.39.27481.

    Article  CAS  PubMed  Google Scholar 

  69. Viguera, E., Canceill, D., and Ehrlich, S. D. (2001) Replication slippage involves DNA polymerase pausing and dissociation, EMBO J., 20, 2587-2595, https://doi.org/10.1093/emboj/20.10.2587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Akabayov, B., Akabayov, S. R., Lee, S. J., Wagner, G., and Richardson, C. C. (2013) Impact of macromolecular crowding on DNA replication, Nat. Commun., 4, 1615, https://doi.org/10.1038/ncomms2620.

    Article  CAS  PubMed  Google Scholar 

  71. Tong, Y., Lemieux, B., and Kong, H. (2011) Multiple strategies to improve sensitivity, speed and robustness of isothermal nucleic acid amplification for rapid pathogen detection, BMC Biotechnol., 11, 1472-6750, https://doi.org/10.1186/1472-6750-11-50.

    Article  CAS  Google Scholar 

  72. Garafutdinov, R. R., Gilvanov, A. R., Kupova, O. Y., and Sakhabutdinova, A. R. (2020) Effect of metal ions on isothermal amplification with Bst exo-DNA polymerase, Int. J. Biol. Macromol., 161, 1447-1455, https://doi.org/10.1016/j.ijbiomac.2020.08.028.

    Article  CAS  PubMed  Google Scholar 

  73. Piotrowski, Y., Gurung, M. K., and Larsen, A. N. (2019) Characterization and engineering of a DNA polymerase reveals a single amino-acid substitution in the fingers subdomain to increase strand-displacement activity of A-family prokaryotic DNA polymerases, BMC Mol. Cell. Biol., 20, 31, https://doi.org/10.1186/s12860-019-0216-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Milligan, J. N., Shroff, R., Garry, D. J., and Ellington, A. D. (2018) Evolution of a thermophilic strand-displacing polymerase using high-temperature isothermal compartmentalized self-replication, Biochemistry, 57, 4607-4619, https://doi.org/10.1021/acs.biochem.8b00200.

    Article  CAS  PubMed  Google Scholar 

  75. Oscorbin, I. P., Belousova, E. A., Boyarskikh, U. A., Zakabunin, A. I., Khrapov, E. A., and Filipenko, M. L. (2017) Derivatives of Bst-like Gss-polymerase with improved processivity and inhibitor tolerance, Nucleic Acids Res., 45, 9595-9610, https://doi.org/10.1093/nar/gkx645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the State Budget Project no. 075-00845-20-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriya N. Antipova.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain description of studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zyrina, N.V., Antipova, V.N. Nonspecific Synthesis in the Reactions of Isothermal Nucleic Acid Amplification. Biochemistry Moscow 86, 887–897 (2021). https://doi.org/10.1134/S0006297921070099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921070099

Keywords

Navigation