Skip to main content
Log in

Cerebral Dopamine Neurotrophic Factor (CDNF): Structure, Functions, and Therapeutic Potential

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The cerebral dopamine neurotrophic factor (CDNF) together with the mesencephalic astrocyte-derived neurotrophic factor (MANF) form a unique family of neurotrophic factors (NTFs) structurally and functionally different from other proteins with neurotrophic activity. CDNF has no receptors on the cell membrane, is localized mainly in the cavity of endoplasmic reticulum (ER), and its primary function is to regulate ER stress. In addition, CDNF is able to suppress inflammation and apoptosis. Due to its functions, CDNF has demonstrated outstanding protective and restorative properties in various models of neuropathology associated with ER stress, including Parkinson’s disease (PD). That is why CDNF already passed clinical trials in patients with PD. However, despite the name, CDNF functions extend far beyond the dopamine system in the brain. In particular, there are data on participation of CDNF in the maturation and maintenance of other neurotransmitter systems, regulation of the processes of neuroplasticity and non-motor behavior. In the present review, we discuss the features of CDNF structure and functions, its protective and regenerative properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

Abbreviations

5-HT:

serotonin or 5-hydroxytriptamine

6-OHDA:

6-hydroxydopamine

CDNF:

cerebral dopamine neurotrophic factor

DA:

dopamine

ER:

endoplasmic reticulum

MANF:

mesencephalic astrocyte-derived neurotrophic factor

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NTF:

neurotrophic factor

PD:

Parkinson’s disease

UPR:

unfolded protein response

References

  1. Skaper, S. D. (2018) Neurotrophic factors: an overview, Methods Mol. Biol., 1727, 1-17, https://doi.org/10.1007/978-1-4939-7571-6_1.

    Article  CAS  PubMed  Google Scholar 

  2. Bothwell, M. (2014) NGF, BDNF, NT3, and NT4, Handb. Exp. Pharmacol., 220, 3-15, https://doi.org/10.1007/978-3-642-45106-5_1.

    Article  CAS  PubMed  Google Scholar 

  3. Voutilainen, M. H., Arumäe, U., Airavaara, M., and Saarma, M. (2015) Therapeutic potential of the endoplasmic reticulum located and secreted CDNF/MANF family of neurotrophic factors in Parkinson’s disease, FEBS Lett., 589, 3739-3748, https://doi.org/10.1016/j.febslet.2015.09.031.

    Article  CAS  PubMed  Google Scholar 

  4. Airaksinen, M. S., and Saarma, M. (2002) The GDNF family: signalling, biological functions and therapeutic value, Nat. Rev. Neurosci., 3, 383-394, https://doi.org/10.1038/nrn812.

    Article  CAS  PubMed  Google Scholar 

  5. Petrova, P., Raibekas, A., Pevsner, J., Vigo, N., Anafi, M., et al. (2003) MANF: a new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons, J. Mol. Neurosci., 20, 173-188, https://doi.org/10.1385/jmn:20:2:173.

    Article  CAS  PubMed  Google Scholar 

  6. Lindholm, P., Voutilainen, M. H., Laurén, J., Peränen, J., Leppänen, V. M., et al. (2007) Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo, Nature, 448, 73-77, https://doi.org/10.1038/nature05957.

    Article  CAS  PubMed  Google Scholar 

  7. Airavaara, M., Harvey, B. K., Voutilainen, M. H., Shen, H., Chou, J., et al. (2012) CDNF protects the nigrostriatal dopamine system and promotes recovery after MPTP treatment in mice, Cell Transplant., 21, 1213-1223, https://doi.org/10.3727/096368911X600948.

    Article  PubMed  Google Scholar 

  8. Garea-Rodríguez, E., Eesmaa, A., Lindholm, P., Schlumbohm, C., König, J., et al. (2016) Comparative analysis of the effects of neurotrophic factors CDNF and GDNF in a nonhuman primate model of Parkinson’s disease, PLoS One, 11, e0149776, https://doi.org/10.1371/journal.pone.0149776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huttunen, H. J., and Saarma, M. (2019) CDNF protein therapy in Parkinson’s disease, Cell Transplant., 28, 349-366, https://doi.org/10.1177/0963689719840290.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Danilova, T., Galli, E., Pakarinen, E., Palm, E., Lindholm, P., et al. (2019) Mesencephalic astrocyte-derived neurotrophic factor (MANF) is highly expressed in mouse tissues with metabolic function, Front. Endocrinol. (Lausanne), 10, 765, https://doi.org/10.3389/fendo.2019.00765.

    Article  Google Scholar 

  11. Parkash, V., Lindholm, P., Peränen, J., Kalkkinen, N., Oksanen, E., et al. (2009) The structure of the conserved neurotrophic factors MANF and CDNF explains why they are bifunctional, Protein Eng. Des. Sel., 22, 233-241, https://doi.org/10.1093/protein/gzn080.

    Article  CAS  PubMed  Google Scholar 

  12. Chen, Y. C., Baronio, D., Semenova, S., Abdurakhmanova, S., and Panula, P. (2020) Cerebral dopamine neurotrophic factor regulates multiple neuronal subtypes and behavior, J. Neurosci., 40, 6146-6164, https://doi.org/10.1523/JNEUROSCI.2636-19.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lindström, R., Lindholm, P., Kallijärvi, J., Yu, L. Y., Piepponen, T. P., et al. (2013) Characterization of the structural and functional determinants of MANF/CDNF in Drosophila in vivo model, PLoS One, 8, e73928, https://doi.org/10.1371/journal.pone.0073928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sereno, D., Müller, W. E. G., Bausen, M., Elkhooly, T. A., Markl, J. S., and Wiens, M. (2017) An evolutionary perspective on the role of mesencephalic astrocyte-derived neurotrophic factor (MANF): at the crossroads of poriferan innate immune and apoptotic pathways, Biochem. Biophys. Rep., 11, 161-173, https://doi.org/10.1016/j.bbrep.2017.02.009.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Richman, C., Rashid, S., Prashar, S., Mishra, R., Selvaganapathy, P. R., and Gupta, B. P. (2018) C. elegans MANF homolog is necessary for the protection of dopaminergic neurons and ER unfolded protein response, Front. Neurosci., 12, 544, https://doi.org/10.3389/fnins.2018.00544.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hellman, M., Peränen, J., Saarma, M., and Permi, P. (2010) 1H, 13C and 15N resonance assignments of the human mesencephalic astrocyte-derived neurotrophic factor, Biomol. NMR Assign., 4, 215-217, https://doi.org/10.1007/s12104-010-9251-8.

    Article  CAS  PubMed  Google Scholar 

  17. Latgé, C., Cabral, K. M., Almeida, M. S., and Foguel, D. (2013) (1)H-, (13)C- and (15)N-NMR assignment of the N-terminal domain of human cerebral dopamine neurotrophic factor (CDNF), Biomol. NMR Assign., 7, 101-103, https://doi.org/10.1007/s12104-012-9388-8.

    Article  CAS  PubMed  Google Scholar 

  18. Bai, M., Vozdek, R., Hnízda, A., Jiang, C., Wang, B., et al. (2018) Conserved roles of C. elegans and human MANFs in sulfatide binding and cytoprotection, Nat. Commun., 9, 897, https://doi.org/10.1038/s41467-018-03355-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Palgi, M., Greco, D., Lindström, R., Auvinen, P., and Heino, T. I. (2012) Gene expression analysis of Drosophila Manf mutants reveals perturbations in membrane traffic and major metabolic changes, BMC Genomics, 13, 134, https://doi.org/10.1186/1471-2164-13-134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Apostolou, A., Shen, Y., Liang, Y., Luo, J., and Fang, S. (2008) Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death, Exp. Cell Res., 314, 2454-2467, https://doi.org/10.1016/j.yexcr.2008.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun, Z. P., Gong, L., Huang, S. H., Geng, Z., Cheng, L., and Chen, Z. Y. (2011) Intracellular trafficking and secretion of cerebral dopamine neurotrophic factor in neurosecretory cells, J. Neurochem., 117, 121-132, https://doi.org/10.1111/j.1471-4159.2011.07179.x.

    Article  CAS  PubMed  Google Scholar 

  22. Appenzeller-Herzog, C., and Ellgaard, L. (2008) The human PDI family: versatility packed into a single fold, Biochim. Biophys. Acta, 1783, 535-548, https://doi.org/10.1016/j.bbamcr.2007.11.010.

    Article  CAS  PubMed  Google Scholar 

  23. Arrieta, A., Blackwood, E. A., Stauffer, W. T., Santo Domingo, M., Bilal, A. S., et al. (2020) Mesencephalic astrocyte-derived neurotrophic factor is an ER-resident chaperone that protects against reductive stress in the heart, J. Biol. Chem., 295, 7566-7583, https://doi.org/10.1074/jbc.RA120.013345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, L., Feng, L., Wang, X., Du, J., Chen, Y., et al. (2015) Mesencephalic astrocyte-derived neurotrophic factor is involved in inflammation by negatively regulating the NF-κB pathway, Sci. Rep., 5, 8133, https://doi.org/10.1038/srep08133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yan, Y., Rato, C., Rohland, L., Preissler, S., and Ron, D. (2019) MANF antagonizes nucleotide exchange by the endoplasmic reticulum chaperone BiP, Nat. Commun., 10, 541, https://doi.org/10.1038/s41467-019-08450-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mei, M., Zhai, C., Li, X., Zhou, Y., Peng, W., et al. (2017) Characterization of aromatic residue-controlled protein retention in the endoplasmic reticulum of Saccharomyces cerevisiae, J. Biol. Chem., 292, 20707-20719, https://doi.org/10.1074/jbc.M117.812107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Henderson, M. J., Richie, C. T., Airavaara, M., Wang, Y., and Harvey, B. K. (2013) Mesencephalic astrocyte-derived neurotrophic factor (MANF) secretion and cell surface binding are modulated by KDEL receptors, J. Biol. Chem., 288, 4209-4225, https://doi.org/10.1074/jbc.M112.400648.

    Article  CAS  PubMed  Google Scholar 

  28. Trychta, K. A., Bäck, S., Henderson, M. J., and Harvey, B. K. (2018) KDEL receptors are differentially regulated to maintain the ER proteome under calcium deficiency, Cell Rep., 25, 1829-1840.e6, https://doi.org/10.1016/j.celrep.2018.10.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arancibia, D., Zamorano, P., and Andrés, M. E. (2018) CDNF induces the adaptive unfolded protein response and attenuates endoplasmic reticulum stress-induced cell death, Biochim. Biophys. Acta Mol. Cell. Res., 1865, 1579-1589, https://doi.org/10.1016/j.bbamcr.2018.08.012.

    Article  CAS  PubMed  Google Scholar 

  30. Lindahl, M., Danilova, T., Palm, E., Lindholm, P., Võikar, V., et al. (2014) MANF is indispensable for the proliferation and survival of pancreatic β cells, Cell Rep., 7, 366-375, https://doi.org/10.1016/j.celrep.2014.03.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sousa-Victor, P., Neves, J., Cedron-Craft, W., Ventura, P. B., Liao, C. Y., et al. (2019) MANF regulates metabolic and immune homeostasis in ageing and protects against liver damage, Nat. Metab., 1, 276-290, https://doi.org/10.1038/s42255-018-0023-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lindahl, M., Chalazonitis, A., Palm, E., Pakarinen, E., Danilova, T., et al. (2020) Cerebral dopamine neurotrophic factor deficiency leads to degeneration of enteric neurons and altered brain dopamine neuronal function in mice, Neurobiol. Dis., 134, 104696, https://doi.org/10.1016/j.nbd.2019.104696.

    Article  CAS  PubMed  Google Scholar 

  33. Schwarz, D. S., and Blower, M. D. (2016) The endoplasmic reticulum: structure, function and response to cellular signaling, Cell. Mol. Life Sci., 73, 79-94, https://doi.org/10.1007/s00018-015-2052-6.

    Article  CAS  PubMed  Google Scholar 

  34. Walter, P., and Ron, D. (2007) Signal integration in the endoplasmic reticulum unfolded protein response, Nat. Rev. Mol. Cell Biol., 8, 519-529, https://doi.org/10.1038/nrm2199.

    Article  CAS  PubMed  Google Scholar 

  35. Hetz, C. (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond, Nat. Rev. Mol. Cell Biol., 13, 89-102, https://doi.org/10.1038/nrm3270.

    Article  CAS  PubMed  Google Scholar 

  36. Dudek, J., Benedix, J., Cappel, S., Greiner, M., Jalal, C., et al. (2009) Functions and pathologies of BiP and its interaction partners, Cell. Mol. Life Sci., 66, 1556-1569, https://doi.org/10.1007/s00018-009-8745-y.

    Article  CAS  PubMed  Google Scholar 

  37. Sonenberg, N., and Hinnebusch, A. G. (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets, Cell, 136, 731-745, https://doi.org/10.1016/j.cell.2009.01.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McQuiston, A., and Diehl, J. A. (2017) Recent insights into PERK-dependent signaling from the stressed endoplasmic reticulum, F1000Res., 6, 1897, https://doi.org/10.12688/f1000research.12138.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nagelkerke, A., Bussink, J., Sweep, F. C., and Span, P. N. (2014) The unfolded protein response as a target for cancer therapy, Biochim. Biophys. Acta, 1846, 277-284, https://doi.org/10.1016/j.bbcan.2014.07.006.

    Article  CAS  PubMed  Google Scholar 

  40. Majumder, M., Huang, C., Snider, M. D., Komar, A. A., Tanaka, J., et al. (2012) A novel feedback loop regulates the response to endoplasmic reticulum stress via the cooperation of cytoplasmic splicing and mRNA translation, Mol. Cell. Biol., 32, 992-1003, https://doi.org/10.1128/MCB.06665-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brown, M. K., and Naidoo, N. (2012) The endoplasmic reticulum stress response in aging and age-related diseases, Front. Physiol., 3, 263, https://doi.org/10.3389/fphys.2012.00263.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Roussel, B. D., Kruppa, A. J., Miranda, E., Crowther, D. C., Lomas, D. A., and Marciniak, S. J. (2013) Endoplasmic reticulum dysfunction in neurological disease, Lancet Neurol., 12, 105-118, https://doi.org/10.1016/S1474-4422(12)70238-7.

    Article  CAS  PubMed  Google Scholar 

  43. Ghemrawi, R., and Khair, M. (2020) Endoplasmic reticulum stress and unfolded protein response in neurodegenerative diseases, Int. J. Mol. Sci., 21, 6127, https://doi.org/10.3390/ijms21176127.

    Article  CAS  PubMed Central  Google Scholar 

  44. Jӓntti, M., and Harvey, B. K. (2020) Trophic activities of endoplasmic reticulum proteins CDNF and MANF, Cell Tissue Res., 382, 83-100, https://doi.org/10.1007/s00441-020-03263-0.

    Article  CAS  PubMed  Google Scholar 

  45. Mizobuchi, N., Hoseki, J., Kubota, H., Toyokuni, S., Nozaki, J. I., et al. (2007) ARMET is a soluble ER protein induced by the unfolded protein response via ERSE-II element, Cell. Struct. Funct., 32, 41-50, https://doi.org/10.1247/csf.07001.

    Article  CAS  PubMed  Google Scholar 

  46. Bergmann, T. J., Fregno, I., Fumagalli, F., Rinaldi, A., Bertoni, F., et al. (2018) Chemical stresses fail to mimic the unfolded protein response resulting from luminal load with unfolded polypeptides, J. Biol. Chem., 293, 5600-5612, https://doi.org/10.1074/jbc.RA117.001484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, G. L., Wang, L. H., Liu, X. Y., Zhang, Y. X., Hu, M. Y., et al. (2018) Cerebral dopamine neurotrophic factor (CDNF) has neuroprotective effects against cerebral ischemia that may occur through the endoplasmic reticulum stress pathway, Int. J. Mol. Sci., 19, 1905, https://doi.org/10.3390/ijms19071905.

    Article  CAS  PubMed Central  Google Scholar 

  48. Hartman, J. H., Richie, C. T., Gordon, K. L., Mello, D. F., Castillo, P., et al. (2019) MANF deletion abrogates early larval Caenorhabditis elegans stress response to tunicamycin and Pseudomonas aeruginosa, Eur. J. Cell Biol., 98, 151043, https://doi.org/10.1016/j.ejcb.2019.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Norisada, J., Hirata, Y., Amaya, F., Kiuchi, K., and Oh-hashi, K. (2016) A comparative analysis of the molecular features of MANF and CDNF, PLoS One, 11, e0146923, https://doi.org/10.1371/journal.pone.0146923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Glembotski, C. C., Thuerauf, D. J., Huang, C., Vekich, J. A., Gottlieb, R. A., and Doroudgar, S. (2012) Mesencephalic astrocyte-derived neurotrophic factor protects the heart from ischemic damage and is selectively secreted upon sarco/endoplasmic reticulum calcium depletion, J. Biol. Chem., 287, 25893-25904, https://doi.org/10.1074/jbc.M112.356345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou, W., Chang, L., Fang, Y., Du, Z., Li, Y., et al. (2016) Cerebral dopamine neurotrophic factor alleviates Aβ 25-35-induced endoplasmic reticulum stress and early synaptotoxicity in rat hippocampal cells, Neurosci. Lett., 633, 40-46, https://doi.org/10.1016/j.neulet.2016.09.008.

    Article  CAS  PubMed  Google Scholar 

  52. Voutilainen, M. H., De Lorenzo, F., Stepanova, P., Bäck, S., Yu, L. Y., et al. (2017) Evidence for an additive neurorestorative effect of simultaneously administered CDNF and GDNF in hemiparkinsonian rats: implications for different mechanism of action, eNeuro, 4, ENEURO.0117-16.2017, https://doi.org/10.1523/ENEURO.0117-16.2017.

    Article  Google Scholar 

  53. Radi, E., Formichi, P., Battisti, C., and Federico, A. (2014) Apoptosis and oxidative stress in neurodegenerative diseases, J. Alzheimer’s Dis., 42, S125-152, https://doi.org/10.3233/JAD-132738.

    Article  CAS  Google Scholar 

  54. Hetz, C., and Papa, F. R. (2018) The unfolded protein response and cell fate control, Mol. Cell, 69, 169-181, https://doi.org/10.1016/j.molcel.2017.06.017.

    Article  CAS  PubMed  Google Scholar 

  55. Muneer, A., and Khan, R. M. S. (2019) Endoplasmic reticulum stress: implications for neuropsychiatric disorders, Chonnam. Med. J., 55, 8-19, https://doi.org/10.4068/cmj.2019.55.1.8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mei, J. M., and Niu, C. S. (2014) Effects of CDNF on 6-OHDA-induced apoptosis in PC12 cells via modulation of Bcl-2/Bax and caspase-3 activation, Neurol. Sci., 35, 1275-1280, https://doi.org/10.1007/s10072-014-1700-1.

    Article  PubMed  Google Scholar 

  57. Hellman, M., Arumae, U., Yu, L. Y., Lindholm, P., Peranen, J., et al. (2011) Mesencephalic astrocyte-derived neurotrophic factor (MANF) has a unique mechanism to rescue apoptotic neurons, J. Biol. Chem., 286, 2675-2680, https://doi.org/10.1074/jbc.M110.146738.

    Article  CAS  PubMed  Google Scholar 

  58. Sawada, M., Sun, W., Hayes, P., Leskov, K., Boothman, D. A., and Matsuyama, S. (2003) Ku70 suppresses the apoptotic translocation of Bax to mitochondria, Nat. Cell. Biol., 5, 320-329, https://doi.org/10.1038/ncb950.

    Article  CAS  PubMed  Google Scholar 

  59. Yoshida, T., Tomioka, I., Nagahara, T., Holyst, T., Sawada, M., et al. (2004) Bax-inhibiting peptide derived from mouse and rat Ku70, Biochem. Biophys. Res. Commun., 321, 961-966, https://doi.org/10.1016/j.bbrc.2004.07.054.

    Article  CAS  PubMed  Google Scholar 

  60. Vishnudas, V. K., and Miller, J. B. (2009) Ku70 regulates Bax-mediated pathogenesis in laminin-alpha2-deficient human muscle cells and mouse models of congenital muscular dystrophy, Hum. Mol. Genet., 18, 4467-4477, https://doi.org/10.1093/hmg/ddp399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Matlik, K., Yu, L. Y., Eesmaa, A., Hellman, M., Lindholm, P., et al. (2015) Role of two sequence motifs of mesencephalic astrocyte-derived neurotrophic factor in its survival-promoting activity, Cell Death Dis., 6, e2032, https://doi.org/10.1038/cddis.2015.371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cheng, L., Zhao, H., Zhang, W., Liu, B., Liu, Y., et al. (2013) Overexpression of conserved dopamine neurotrophic factor (CDNF) in astrocytes alleviates endoplasmic reticulum stress induced cell damage and inflammatory cytokine secretion, Biochem. Biophys. Res. Commun., 435, 34-39, https://doi.org/10.1016/j.bbrc.2013.04.029.

    Article  CAS  PubMed  Google Scholar 

  63. Zhao, H., Cheng, L., Liu, Y., Zhang, W., Maharjan, S., et al. (2014) Mechanisms of anti-inflammatory property of conserved dopamine neurotrophic factor: inhibition of JNK signaling in lipopolysaccharide-induced microglia, J. Mol. Neurosci., 52, 186-192, https://doi.org/10.1007/s12031-013-0120-7.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, Y., Xiang, Y., Wang, X., Zhu, L., Li, H., et al. (2019) Cerebral dopamine neurotrophic factor protects microglia by combining with AKT and by regulating FoxO1/mTOR signaling during neuroinflammation, Biomed. Pharmacother., 109, 2278-2284, https://doi.org/10.1016/j.biopha.2018.11.028.

    Article  CAS  PubMed  Google Scholar 

  65. Nadella, R., Voutilainen, M. H., Saarma, M., Gonzalez-Barrios, J. A., Leon Chavez, B. A., et al. (2014) Transient transfection of human CDNF gene reduces the 6-hydroxydopamine-induced neuroinflammation in the rat substantia nigra, J. Neuroinflammation, 11, 209, https://doi.org/10.1186/s12974-014-0209-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tang, T., Li, Y., Jiao, Q., Du, X., and Jiang, H. (2017) Cerebral dopamine neurotrophic factor: a potential therapeutic agent for Parkinson’s disease, Neurosci. Bull., 33, 568-575, https://doi.org/10.1007/s12264-017-0123-4.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Stepanova, P., Srinivasan, V., Lindholm, D., and Voutilainen, M. H. (2020) Cerebral dopamine neurotrophic factor (CDNF) protects against quinolinic acid-induced toxicity in in vitro and in vivo models of Huntington’s disease, Sci. Rep., 10, 19045, https://doi.org/10.1038/s41598-020-75439-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tsybko, A. S., Ilchibaeva, T. V., Kulikov, A. V., Kulikova, E. A., Krasnov, I. B., et al. (2015) Effect of microgravity on glial cell line-derived neurotrophic factor and cerebral dopamine neurotrophic factor gene expression in the mouse brain, J. Neurosci. Res., 93, 1399-1404, https://doi.org/10.1002/jnr.23600.

    Article  CAS  PubMed  Google Scholar 

  69. Popova, N. K., Kulikov, A. V., Kondaurova, E. M., Tsybko, A. S., Kulikova, E. A., et al. (2015) Risk neurogenes for long-term spaceflight: dopamine and serotonin brain system, Mol. Neurobiol., 51, 1443-1451, https://doi.org/10.1007/s12035-014-8821-7.

    Article  CAS  PubMed  Google Scholar 

  70. Chalazonitis, A., Li, Z., Pham, T. D., Chen, J., Rao, M., et al. (2020) Cerebral dopamine neurotrophic factor is essential for enteric neuronal development, maintenance, and regulation of gastrointestinal transit, J. Comp. Neurol., 528, 2420-2444, https://doi.org/10.1002/cne.24901.

    Article  CAS  PubMed  Google Scholar 

  71. Choi, J. M., Hong, J. H., Chae, M. J., Ngyuen, P. H., Kang, H. S., et al. (2011) Analysis of mutations and the association between polymorphisms in the cerebral dopamine neurotrophic factor (CDNF) gene and Parkinson’s disease, Neurosci. Lett., 493, 97-101, https://doi.org/10.1016/j.neulet.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  72. Chen, Y. C., Baronio, D., Semenova, S., Abdurakhmanova, S., and Panula, P. (2020) Cerebral dopamine neurotrophic factor regulates multiple neuronal subtypes and behavior, J. Neurosci., 40, 6146-6164, https://doi.org/10.1523/JNEUROSCI.2636-19.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Man, H. Y., Wang, Q., Lu, W. Y., Ju, W., Ahmadian, G., et al. (2003) Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons, Neuron, 38, 611-624, https://doi.org/10.1016/s0896-6273(03)00228-9.

    Article  CAS  PubMed  Google Scholar 

  74. Sui, L., Wang, J., and Li, B. M. (2008) Role of the phosphoinositide 3-kinase-Akt-mammalian target of the rapamycin signaling pathway in long-term potentiation and trace fear conditioning memory in rat medial prefrontal cortex, Learn Mem., 15, 762-776, https://doi.org/10.1101/lm.1067808.

    Article  CAS  PubMed  Google Scholar 

  75. Kemppainen, S., Lindholm, P., Galli, E., Lahtinen, H. M., Koivisto, H., et al. (2015) Cerebral dopamine neurotrophic factor improves long-term memory in APP/PS1 transgenic mice modeling Alzheimer’s disease as well as in wild-type mice, Behav. Brain Res., 291, 1-11, https://doi.org/10.1016/j.bbr.2015.05.002.

    Article  CAS  PubMed  Google Scholar 

  76. Eremin, D., Ilchibaeva, T., Khotskin, N., Naumenko, V., and Tsybko, A. (2019) Effect of cerebral dopamine neurotrophic factor (CDNF) on the behavior and expression of the key genes of the brain serotonin system in C57Bl6/J mice, IBRO Rep., 6, S58, https://doi.org/10.1016/j.ibror.2019.07.192.

    Article  Google Scholar 

  77. Ilchibaeva, T., Zolotenkova, E., Eremin, D., and Tsybko, A. (2020) Hippocampal overexpression of the cerebral dopamine neurotrophic factor (CDNF) impaired fear memory formation in rats, Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2020), 376, https://doi.org/10.18699/BGRS/SB-2020-238.

    Article  Google Scholar 

  78. Tsybko, A. S., Il’chibaeva, T. V., Khotskin, N. V., Kovetskaya, A. I., Naumenko, V. S., and Popova, N. K. (2019) The effect of atypical antipsychotic drugs on the neurotrophic factors gene expression in the MPTP model of Parkinson’s disease, Neurochem. J., 13, 169-175, https://doi.org/10.1134/S1819712419020120.

    Article  CAS  Google Scholar 

  79. Popova, N. K., Ilchibaeva, T. V., and Naumenko, V. S. (2017) Neurotrophic factors (BDNF and GDNF) and the serotonergic system of the brain, Biochemistry (Moscow), 82, 308-317, https://doi.org/10.1134/S0006297917030099.

    Article  CAS  Google Scholar 

  80. Tsybko, A. S., Ilchibaeva, T. V., and Popova, N. K. (2017) Role of glial cell line-derived neurotrophic factor in the pathogenesis and treatment of mood disorders, Rev. Neurosci., 28, 219-233, https://doi.org/10.1515/revneuro-2016-0063.

    Article  PubMed  Google Scholar 

  81. Joshi, H., McIntyre, W. B., Kooner, S., Rathbone, M., Gabriele, S., et al. (2020) Decreased expression of cerebral dopamine neurotrophic factor in platelets of stroke patients, J. Stroke Cerebrovasc. Dis., 29, 104502, https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104502.

    Article  PubMed  Google Scholar 

  82. Virachit, S., Mathews, K. J., Cottam, V., Werry, E., Galli, E., et al. (2019) Levels of glial cell line-derived neurotrophic factor are decreased, but fibroblast growth factor 2 and cerebral dopamine neurotrophic factor are increased in the hippocampus in Parkinson’s disease, Brain Pathol., 29, 813-825, https://doi.org/10.1111/bpa.12730.

    Article  CAS  PubMed  Google Scholar 

  83. Lohoff, F. W., Bloch, P. J., Ferraro, T. N., Berrettini, W. H., Pettinati, H. M., et al. (2009) Association analysis between polymorphisms in the conserved dopamine neurotrophic factor (CDNF) gene and cocaine dependence, Neurosci. Lett., 453, 199-203, https://doi.org/10.1016/j.neulet.2009.02.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang, Y., Yu, H., Li, W., Liu, B., Zhang, H., et al. (2018) Association between cerebral dopamine neurotrophic factor (CDNF) 2 polymorphisms and schizophrenia susceptibility and symptoms in the Han Chinese population, Behav. Brain Funct., 14, 1, https://doi.org/10.1186/s12993-017-0133-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Galli, E., Lindholm, P., Kontturi, L. S., Saarma, M., Urtti, A., and Yliperttula, M. (2019) Characterization of CDNF-secreting ARPE-19 cell clones for encapsulated cell therapy, Cell Transplant., 28, 413-424, https://doi.org/10.1177/0963689719827943.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mercado, G., Valdes, P., and Hetz, C. (2013) An ERcentric view of Parkinson’s disease, Trends Mol. Med., 19, 165-75, https://doi.org/10.1016/j.molmed.2012.12.005.

    Article  CAS  PubMed  Google Scholar 

  87. Hoozemans, J. J., van Haastert, E. S., Eikelenboom, P., de Vos, R. A., Rozemuller, J. M., and Scheper, W. (2007) Activation of the unfolded protein response in Parkinson’s disease, Biochem. Biophys. Res. Commun., 354, 707-711, https://doi.org/10.1016/j.bbrc.2007.01.043.

    Article  CAS  PubMed  Google Scholar 

  88. Bellucci, A., Navarria, L., Zaltieri, M., Falarti, E., Bodei, S., et al. (2011) Induction of the unfolded protein response by a-synuclein in experimental models of Parkinson’s disease, J. Neurochem., 116, 588-605, https://doi.org/10.1111/j.1471-4159.2010.07143.x.

    Article  CAS  PubMed  Google Scholar 

  89. Heman-Ackah, S. M., Manzano, R., Hoozemans, J. J. M., Scheper, W., Flynn, R., et al. (2017) Alpha-synuclein induces the unfolded protein response in Parkinson’s disease SNCA triplication iPSC-derived neurons, Hum. Mol. Genet., 26, 4441-4450, https://doi.org/10.1093/hmg/ddx331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mercado, G., Castillo, V., Soto, P., López, N., Axten, J. M., et al. (2018) Targeting PERK signaling with the small molecule GSK2606414 prevents neurodegeneration in a model of Parkinson’s disease, Neurobiol. Dis., 112, 136-148, https://doi.org/10.1016/j.nbd.2018.01.004.

    Article  CAS  PubMed  Google Scholar 

  91. Ryu, E. J., Harding, H. P., Angelastro, J. M., Vitolo, O. V., David, R., and Greene, L. A. (2002) Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson’s disease, J. Neurosci., 22, 10690-10698, https://doi.org/10.1523/JNEUROSCI.22-24-10690.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Holtz, W. A., and O’Malley, K. L. (2003) Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons, J. Biol. Chem., 278, 19367-19377, https://doi.org/10.1074/jbc.M211821200.

    Article  CAS  PubMed  Google Scholar 

  93. Egawa, N., Yamamoto, K., Inoue, H., Hikawa, R., Nishi, K., et al. (2011) The endoplasmic reticulum stress sensor, ATF6α, protects against neurotoxin-induced dopaminergic neuronal death, J. Biol. Chem., 286, 7947-7957, https://doi.org/10.1074/jbc.M110.156430.

    Article  CAS  PubMed  Google Scholar 

  94. Sado, M., Yamasaki, Y., Iwanaga, T., Onaka, Y., Ibuki, T., et al. (2009) Protective effect against Parkinson’s disease-related insults through the activation of XBP1, Brain Res., 1257, 16-24, https://doi.org/10.1016/j.brainres.2008.11.104.

    Article  CAS  PubMed  Google Scholar 

  95. Latge, C., Cabral, K. M., de Oliveira, G. A., Raymundo, D. P., Freitas, J. A., et al. (2015) The solution structure and dynamics of full-length human cerebral dopamine neurotrophic factor and its neuroprotective role against α-synuclein oligomers, J. Biol. Chem., 290, 20527-20540, https://doi.org/10.1074/jbc.M115.662254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Albert, K., Raymundo, D. P., Panhelainen, A., Eesmaa, A., Shvachiy, L., et al. (2021) Cerebral dopamine neurotrophic factor reduces α-synuclein aggregation and propagation and alleviates behavioral alterations in vivo, Mol. Ther., https://doi.org/10.1016/j.ymthe.2021.04.035.

    Article  PubMed  Google Scholar 

  97. Voutilainen, M. H., Back, S., Peranen, J., Lindholm, P., Raasmaja, A., et al. (2011) Chronic infusion of CDNF prevents 6-OHDA-induced deficits in a rat model of Parkinson’s disease, Exp. Neurol., 228, 99-108, https://doi.org/10.1016/j.expneurol.2010.12.013.

    Article  CAS  PubMed  Google Scholar 

  98. Mätlik, K., Vihinen, H., Bienemann, A., Palgi, J., Voutilainen, M. H., et al. (2017) Intrastriatally infused exogenous CDNF is endocytosed and retrogradely transported to substantia nigra, eNeuro, 4, ENEURO.0128-16.2017, https://doi.org/10.1523/ENEURO.0128-16.2017.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Airavaara, M., Harvey, B. K., Voutilainen, M. H., Shen, H., Chou, J., et al. (2012) CDNF protects the nigrostriatal dopamine system and promotes recovery after MPTP treatment in mice, Cell Transplant., 21, 1213-1223, https://doi.org/10.3727/096368911X600948.

    Article  PubMed  Google Scholar 

  100. Back, S., Peranen, J., Galli, E., Pulkkila, P., Lonka-Nevalaita, L., et al. (2013) Gene therapy with AAV2-CDNF provides functional benefits in a rat model of Parkinson’s disease, Brain Behav., 3, 75-88, https://doi.org/10.1002/brb3.117.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ren, X., Zhang, T., Gong, X., Hu, G., Ding, W., and Wang, X. (2013) AAV2-mediated striatum delivery of human CDNF prevents the deterioration of midbrain dopamine neurons in a 6-hydroxydopamine induced parkinsonian rat model, Exp. Neurol., 248, 148-156, https://doi.org/10.1016/j.expneurol.2013.06.002.

    Article  CAS  PubMed  Google Scholar 

  102. Cordero-Llana, O., Houghton, B. C., Rinald, F., Taylor, H., Yanez-Munoz, R. J., et al. (2015) Enhanced efficacy of the CDNF/MANF family by combined intranigral overexpression in the 6-OHDA rat model of Parkinson’s disease, Mol. Ther., 23, 244-254, https://doi.org/10.1038/mt.2014.206.

    Article  CAS  PubMed  Google Scholar 

  103. Jaumotte, J. D., Saarma, M., and Zigmond, M. J. (2021) Protection of dopamine neurons by CDNF and neurturin variant N4 against MPP+ in dissociated cultures from rat mesencephalon, PLoS One, 16, e0245663, https://doi.org/10.1371/journal.pone.0245663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Huotarinen, A., Penttinen, A. M., Back, S., Voutilainen, M. H., Julku, U., et al. (2018) Combination of CDNF and deep brain stimulation decreases neurological deficits in late-stage model Parkinson’s disease, Neuroscience, 374, 250-263, https://doi.org/10.1016/j.neuroscience.2018.01.052.

    Article  CAS  PubMed  Google Scholar 

  105. Wang, L., Wang, Z., Xu, X., Zhu, R., Bi, J., et al. (2017) Recombinant AAV8-mediated intrastriatal gene delivery of CDNF protects rats against methamphetamine neurotoxicity, Int. J. Med. Sci., 14, 340-347, https://doi.org/10.7150/ijms.18623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sidorova, Y. A., and Saarma, M. (2020) Can growth factors cure Parkinson’s disease? Trends Pharmacol. Sci., 41, 909-922, https://doi.org/10.1016/j.tips.2020.09.010.

    Article  CAS  PubMed  Google Scholar 

  107. Anttila, J. E., Pöyhönen, S., and Airavaara, M. (2019) Secondary pathology of the thalamus after focal cortical stroke in rats is not associated with thermal or mechanical hypersensitivity and is not alleviated by intra-thalamic post-stroke delivery of recombinant CDNF or MANF, Cell Transplant., 28, 425-438, https://doi.org/10.1177/0963689719837915.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kurt, M. A., Davies, D. C., Kidd, M., Duff, K., Rolph, S. C., et al. (2001) Neurodegenerative changes associated with beta-amyloid deposition in the brains of mice carrying mutant amyloid precursor protein and mutant presenilin-1 transgenes, Exp. Neurol., 171, 59-71, https://doi.org/10.1006/exnr.2001.7717.

    Article  CAS  PubMed  Google Scholar 

  109. Trinchese, F., Liu, S., Ninan, I., Puzzo, D., Jacob, J. P., and Arancio, O. (2004) Cell cultures from animal models of Alzheimer’s disease as a tool for faster screening and testing of drug efficacy, J. Mol. Neurosci., 24, 15-21, https://doi.org/10.1385/JMN:24:1:015.

    Article  CAS  PubMed  Google Scholar 

  110. Liu, Y., Nie, L., Zhao, H., Zhang, W., Zhang, Y. Q., et al. (2014) Conserved dopamine neurotrophic factor-transduced mesenchymal stem cells promote axon regeneration and functional recovery of injured sciatic nerve, PLoS One, 9, e110993, https://doi.org/10.1371/journal.pone.0110993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhao, H., Cheng, L., Du, X., Hou, Y., Liu, Y, et al. (2016) Transplantation of cerebral dopamine neurotrophic factor transducted BMSCs in contusion spinal cord injury of rats: promotion of nerve regeneration by alleviating neuroinflammation, Mol. Neurobiol., 53, 187-199, https://doi.org/10.1007/s12035-014-9000-6.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (grant no. 19-75-00016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton S. Tsybko.

Ethics declarations

The authors declare no conflicts of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremin, D.V., Ilchibaeva, T.V. & Tsybko, A.S. Cerebral Dopamine Neurotrophic Factor (CDNF): Structure, Functions, and Therapeutic Potential. Biochemistry Moscow 86, 852–866 (2021). https://doi.org/10.1134/S0006297921070063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921070063

Keywords

Navigation