Skip to main content
Log in

TLR4 and TNFR1 blockade dampen M1 macrophage activation and shifts them towards an M2 phenotype

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The Gram-negative bacterial lipopolysaccharide (LPS)-induced sepsis has emerged as major concern worldwide due to the pressing need to develop its effective treatment strategies which is not available yet. LPS is the major causative agent in the pathogenesis of septic shock. In macrophages, LPS interacts with cell surface TLR4 leading to reactive oxygen species (ROS), TNF-α, IL-1β production, oxidative stress and markedly activated the MAPKs and NF-kB pathway. Post cell isolation, the macrophages were subjected to administration with neutralizing antibodies to TLR4 and TNFR1 either alone or in combination prior to LPS challenge. Subsequently, we performed flow cytometric analysis along with Western blots, reactive oxygen species production, and TNF-α, IL-1β release. Outcomes suggested that the dual blockade of TLR4 and TNFR1 was indeed beneficial in shifting the LPS-induced M1 polarization towards M2. Both TLR4 and TNFR1 exhibited dependency during LPS stimulation. Furthermore, the switch towards the M2 phenotype might be responsible for the decreased levels of TNF-α, IL-1β, NO, and superoxide anion and the simultaneous elevation in the activity level of anti-oxidant enzymes like SOD, CAT (catalase), and GSH content in the isolated peritoneal macrophages. Simultaneous blocking of both TLR4 and TNFR1 also showed reduced expression of NF-kB, JNK, and COX-2 by promoting TNFR2-mediated TNF-α signaling. The increased arginase activity further confirmed the polarization towards M2. Thus it may be inferred that dual blockade of TLR4 and TNFR1 might be an alternative therapeutic approach for regulating of sepsis in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang HD, Lu DX, Qi RB. Therapeutic strategies targeting the LPS signalling and cytokines. Pathophysiology. 2009;16(4):291–6. https://doi.org/10.1016/j.pathophys.2009.02.006.

    Article  CAS  PubMed  Google Scholar 

  2. Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turnbull IR, Vincent JL. Sepsis and septic shock. Nat Rev Dis Primers. 2016;2:45. https://doi.org/10.1038/nrdp.2016.45.

    Article  Google Scholar 

  3. Bennett JM, Reeves G, Billman GE, Sturmberg JP. Inflammation-nature’s way to efficiently respond to all types of challenges: implications for understanding and managing “the epidemic” of chronic diseases. Front Med (Lausanne). 2018;5:316. https://doi.org/10.3389/fmed.2018.00316.

    Article  Google Scholar 

  4. Hirayama D, Iida T, Nakase H. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int J Mol Sci. 2017;19(1):92. https://doi.org/10.3390/ijms19010092.

    Article  CAS  PubMed Central  Google Scholar 

  5. Murad S. Toll-like receptor 4 in inflammation and angiogenesis: a double-edged sword. Front Immunol. 2014;5:313. https://doi.org/10.3389/fimmu.2014.00313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491. https://doi.org/10.3389/fimmu.2014.00491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tan HY, Wang N, Li S, Hong M, Wang X, Feng Y. The reactive oxygen species in macrophage polarization: reflecting its dual role in progression and treatment of human diseases. Oxid Med Cell Longev. 2016;2016:2795090. https://doi.org/10.1155/2016/2795090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Parameswaran N, Patial S. Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr. 2010;20(2):87–103. https://doi.org/10.1615/critreveukargeneexpr.v20.i2.10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mogensen TH. Pathogen recognition and inflammatory signalling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240–73. https://doi.org/10.1128/CMR.00046-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801. https://doi.org/10.1016/j.cell.2006.02.015.

    Article  CAS  PubMed  Google Scholar 

  11. Roger T, Froidevaux C, Le Roy D, Reymond MK, Chanson AL, Mauri D, Burns K, Riederer BM, Akira S, Calandra T. Protection from lethal gram-negative bacterial sepsis by targeting Toll-like receptor 4. Proc Natl Acad Sci U S A. 2009;106(7):2348–52. https://doi.org/10.1073/pnas.0808146106.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Park BS, Lee JO. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med. 2013;45(12):e66. https://doi.org/10.1038/emm.2013.97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li Q, Wu C, Liu Z, Zhang H, Du Y, Liu Y, Song K, Shi Q, Li R. Increased TLR4 expression aggravates sepsis by promoting IFN-γ expression in CD38-/- Mice. J Immunol Res. 2019;2019:3737890. https://doi.org/10.1155/2019/3737890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alves-Rosa F, Vulcano M, Beigier-Bompadre M, Fernández G, Palermo M, Isturiz MA. Interleukin-1beta induces in vivo tolerance to lipopolysaccharide in mice. Clin Exp Immunol. 2002;128(2):221–8. https://doi.org/10.1046/j.1365-2249.2002.01828.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fukata M, Chen A, Klepper A, Krishnareddy S, Vamadevan AS, Thomas LS, Xu R, Inoue H, Arditi M, Dannenberg AJ, Abreu MT. Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: role in proliferation and apoptosis in the intestine. Gastroenterology. 2006;131(3):862–77. https://doi.org/10.1053/j.gastro.2006.06.017.

    Article  CAS  PubMed  Google Scholar 

  16. Lee S, Shin S, Kim H, Han S, Kim K, Kwon J, Kwak JH, Lee CK, Ha NJ, Yim D, Kim K. Anti-inflammatory function of arctiin by inhibiting COX-2 expression via NF-κB pathways. J Inflamm (Lond). 2011;8(1):16. https://doi.org/10.1186/1476-9255-8-16.

    Article  CAS  Google Scholar 

  17. Wajant H, Siegmund D. TNFR1 and TNFR2 in the control of the life and death balance of macrophages. Front Cell Dev Biol. 2019;7:91. https://doi.org/10.3389/fcell.2019.00091.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Van Hauwermeiren F, Vandenbroucke RE, Libert C. Treatment of TNF mediated diseases by selective inhibition of soluble TNF or TNFR1. Cytokine Growth Factor Rev. 2011;22(5–6):311–9. https://doi.org/10.1016/j.cytogfr.2011.09.004.

    Article  CAS  PubMed  Google Scholar 

  19. Yang S, Wang J, Brand DD, Zheng SG. Role of TNF-TNF receptor 2 signal in regulatory T cells and its therapeutic implications. Front Immunol. 2018;9:784. https://doi.org/10.3389/fimmu.2018.00784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453–62. https://doi.org/10.1016/j.cub.2014.03.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lü JM, Lin PH, Yao Q, Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med. 2010;14(4):840–60. https://doi.org/10.1111/j.1582-4934.2009.00897.x.

    Article  CAS  PubMed  Google Scholar 

  22. Kuzmich NN, Sivak KV, Chubarev VN, Porozov YB, Savateeva-Lyubimova TN, Peri F. TLR4 signalling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines (Basel). 2017;5(4):34. https://doi.org/10.3390/vaccines5040034.

    Article  CAS  Google Scholar 

  23. Meltzer MS. Peritoneal mononuclear phagocytes from small animals. In: Adams DO, Edelson PJ, Koren HS, editors. Methods for studying mononuclear phagocytes. New York: Academic Press; 1981. p. 63–8.

    Chapter  Google Scholar 

  24. Dutta P, Sultana S, Dey R, Bishayi B. Regulation of Staphylococcus aureus-induced CXCR1 expression via inhibition of receptor mobilization and receptor shedding during dual receptor (TNFR1 and IL-1R) neutralization. Immunol Res. 2019;67(2–3):241–60. https://doi.org/10.1007/s12026-019-09083-x.

    Article  CAS  PubMed  Google Scholar 

  25. Watanabe K, Jose PJ, Rankin SM. Eotaxin-2 generation is differentially regulated by lipopolysaccharide and IL-4 in monocytes and macrophages. J Immunol. 2002;168(4):1911–8. https://doi.org/10.4049/jimmunol.168.4.1911.

    Article  CAS  PubMed  Google Scholar 

  26. Jablonski KA, Amici SA, Webb LM, Ruiz-Rosado Jde D, Popovich PG, Partida-Sanchez S, Guerau-de-Arellano M. Novel markers to delineate murine M1 and M2 macrophages. PLoS ONE. 2015;10(12):e0145342. https://doi.org/10.1371/journal.pone.0145342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leigh PCJ, Van Furth R, Zwet TL. In vitro determination of phagocytosis and intracellular killing by polymorphonuclear neutrophils and mononuclear phagocytes. In: Weir DM, editor. Handbook of Experimental Immunology. Oxford: Blackwell Scientific Publication; 1986. p. 46.1-46.19.

    Google Scholar 

  28. Watanabe I, Ichiki M, Shiratsuchi A, Nakanishi Y. TLR2-mediated survival of Staphylococcus aureus in macrophages: a novel bacterial strategy against host innate immunity. J Immunol. 2007;178(8):4917–25. https://doi.org/10.4049/jimmunol.178.8.4917.

    Article  CAS  PubMed  Google Scholar 

  29. Absolom DR. Basic methods for the study of phagocytosis. Methods Enzymol. 1986;132:95–180. https://doi.org/10.1016/s0076-6879(86)32005-6.

    Article  CAS  PubMed  Google Scholar 

  30. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302–10. https://doi.org/10.1016/s0076-6879(78)52032-6.

    Article  CAS  PubMed  Google Scholar 

  31. Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968;25(1):192–205. https://doi.org/10.1016/0003-2697(68)90092-4.

    Article  CAS  PubMed  Google Scholar 

  32. Paoletti F, Aldinucci D, Mocali A, Caparrini A. A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Anal Biochem. 1986;154(2):536–41. https://doi.org/10.1016/0003-2697(86)90026-6.

    Article  CAS  PubMed  Google Scholar 

  33. Aebi H, Wyss SR, Scherz B, Skvaril F. Heterogeneity of erythrocyte catalase II. Isolation and characterization of normal and variant erythrocyte catalase and their subunits. Eur J Biochem. 1974;48(1):137–45. https://doi.org/10.1111/j.1432-1033.1974.tb03751.x.

    Article  CAS  PubMed  Google Scholar 

  34. Goldberg DM, Spooner RJ. Assay of glutathione reductase. In: Bergmeyen HV, editor. Methods of Enzymatic Analysis. 3rd ed. Verlog Chemie: Deerfiled Beach; 1983. p. 258–65.

    Google Scholar 

  35. Weisser SB, McLarren KW, Kuroda E, Sly LM. Generation and characterization of murine alternatively activated macrophages. Methods Mol Biol. 2013;946:225–39. https://doi.org/10.1007/978-1-62703-128-8_14.

    Article  CAS  PubMed  Google Scholar 

  36. Corraliza IM, Campo ML, Soler G, Modolell M. Determination of arginase activity in macrophages: a micromethod. J Immunol Methods. 1994;174(1–2):231–5. https://doi.org/10.1016/0022-1759(94)90027-2.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Q, Zhou X, Yang L, Luo M, Han L, Lu Y, Shi Q, Wang Y, Liang Q. Gentiopicroside (GENT) protects against sepsis induced by lipopolysaccharide (LPS) through the NF-κB signaling pathway. Ann Transl Med. 2019;7(23):731. https://doi.org/10.21037/atm.2019.11.126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sin WX, Yeong JP, Lim TJF, Su IH, Connolly JE, Chin KC. IRF-7 mediates type I IFN responses in endotoxin-challenged mice. Front Immunol. 2020;11:640. https://doi.org/10.3389/fimmu.2020.00640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165–228. https://doi.org/10.1007/s00134-012-2769-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rello J, Valenzuela-Sánchez F, Ruiz-Rodriguez M, Moyano S. Sepsis: a review of advances in management. Adv Ther. 2017;34(11):2393–411. https://doi.org/10.1007/s12325-017-0622-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang Z, Ming XF. Functions of arginase isoforms in macrophage inflammatory responses: impact on cardiovascular diseases and metabolic disorders. Front Immunol. 2014;5:533. https://doi.org/10.3389/fimmu.2014.00533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ebach DR, Riehl TE, Stenson WF. Opposing effects of tumor necrosis factor receptor 1 and 2 in sepsis due to cecal ligation and puncture. Shock. 2005;23(4):311–8. https://doi.org/10.1097/01.shk.0000157301.87051.77.

    Article  CAS  PubMed  Google Scholar 

  43. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. https://doi.org/10.1038/sigtrans.2017.23.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wittebole X, Castanares-Zapatero D, Laterre PF. Toll-like receptor 4 modulation as a strategy to treat sepsis. Mediators Inflamm. 2010;2010:568396. https://doi.org/10.1155/2010/568396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;388(6640):394–7. https://doi.org/10.1038/41131.

    Article  CAS  PubMed  Google Scholar 

  46. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 1999;11(4):443–51. https://doi.org/10.1016/s1074-7613(00)80119-3.

    Article  CAS  PubMed  Google Scholar 

  47. Hirschfeld M, Ma Y, Weis JH, Vogel SN, Weis JJ. Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J Immunol. 2000;165(2):618–22. https://doi.org/10.4049/jimmunol.165.2.618.

    Article  CAS  PubMed  Google Scholar 

  48. Trombetta AC, Soldano S, Contini P, Tomatis V, Ruaro B, Paolino S, Brizzolara R, Montagna P, Sulli A, Pizzorni C, Smith V, Cutolo M. A circulating cell population showing both M1 and M2 monocyte/macrophage surface markers characterizes systemic sclerosis patients with lung involvement. Respir Res. 2018;19(1):186. https://doi.org/10.1186/s12931-018-0891-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta. 2014;1843(11):2563–82. https://doi.org/10.1016/j.bbamcr.2014.05.014.

    Article  CAS  PubMed  Google Scholar 

  50. Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta. 2010;1799(10–12):775–87. https://doi.org/10.1016/j.bbagrm.2010.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Walton RG, Kosmac K, Mula J, Fry CS, Peck BD, Groshong JS, Finlin BS, Zhu B, Kern PA, Peterson CA. Human skeletal muscle macrophages increase following cycle training and are associated with adaptations that may facilitate growth. Sci Rep. 2019;9(1):969. https://doi.org/10.1038/s41598-018-37187-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pfeffer K, Matsuyama T, Kündig TM, Wakeham A, Kishihara K, Shahinian A, Wiegmann K, Ohashi PS, Krönke M, Mak TW. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell. 1993;73(3):457–67. https://doi.org/10.1016/0092-8674(93)90134-c.

    Article  CAS  PubMed  Google Scholar 

  53. Hehlgans T, Pfeffer K. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology. 2005;115(1):1–20. https://doi.org/10.1111/j.1365-2567.2005.02143.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wright TW, Pryhuber GS, Chess PR, Wang Z, Notter RH, Gigliotti F. TNF receptor signaling contributes to chemokine secretion, inflammation, and respiratory deficits during Pneumocystis pneumonia. J Immunol. 2004;172(4):2511–21. https://doi.org/10.4049/jimmunol.172.4.2511.

    Article  CAS  PubMed  Google Scholar 

  55. Rath M, Müller I, Kropf P, Closs EI, Munder M. Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol. 2014;5:532. https://doi.org/10.3389/fimmu.2014.00532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang WW, Jenkinson CP, Griscavage JM, Kern RM, Arabolos NS, Byrns RE, Cederbaum SD, Ignarro LJ. Co-induction of arginase and nitric oxide synthase in murine macrophages activated by lipopolysaccharide. Biochem Biophys Res Commun. 1995;210(3):1009–16. https://doi.org/10.1006/bbrc.1995.1757.

    Article  CAS  PubMed  Google Scholar 

  57. Orecchioni M, Ghosheh Y, Pramod AB, Ley K. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front Immunol. 2019;10:1084. https://doi.org/10.3389/fimmu.2019.01084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593–604. https://doi.org/10.1016/j.immuni.2010.05.007.

    Article  CAS  PubMed  Google Scholar 

  59. Müller E, Christopoulos PF, Halder S, Lunde A, Beraki K, Speth M, Øynebråten I, Corthay A. Toll-like receptor ligands and interferon-γ synergize for induction of antitumor M1 macrophages. Front Immunol. 2017;8:1383. https://doi.org/10.3389/fimmu.2017.01383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang SK, Wang YC, Chao CC, Chuang YJ, Lan CY, Chen BS. Dynamic cross-talk analysis among TNF-R, TLR-4 and IL-1R signalings in TNFalpha-induced inflammatory responses. BMC Med Genomics. 2010;3:19. https://doi.org/10.1186/1755-8794-3-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Parisi L, Gini E, Baci D, Tremolati M, Fanuli M, Bassani B, Farronato G, Bruno A, Mortara L. Macrophage polarization in chronic inflammatory diseases: killers or builders? J Immunol Res. 2018;2018:8917804. https://doi.org/10.1155/2018/8917804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mills CD. M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol. 2012;32(6):463–88. https://doi.org/10.1615/critrevimmunol.v32.i6.10.

    Article  CAS  PubMed  Google Scholar 

  63. Butzer U, Weidenbach H, Gansauge S, Gansauge F, Beger HG, Nussler AK. Increased oxidative stress in the RAW 264.7 macrophage cell line is partially mediated via the S-nitrosothiol-induced inhibition of glutathione reductase. FEBS Lett. 1999;445(2–3):274–8. https://doi.org/10.1016/s0014-5793(99)00139-8.

    Article  CAS  PubMed  Google Scholar 

  64. Spiller S, Elson G, Ferstl R, Dreher S, Mueller T, Freudenberg M, Daubeuf B, Wagner H, Kirschning CJ. TLR4-induced IFN-gamma production increases TLR2 sensitivity and drives Gram-negative sepsis in mice. J Exp Med. 2008;205(8):1747–54. https://doi.org/10.1084/jem.20071990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Department of Science and Technology, Government of India, for providing us with the instruments procured under the DST-PURSE programme to the Department of Physiology, University of Calcutta. The author is indebted to CRNN (BD Bioscience Room), Kolkata, for allowing us to use the FACS facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswadev Bishayi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawoo, R., Dey, R., Ghosh, R. et al. TLR4 and TNFR1 blockade dampen M1 macrophage activation and shifts them towards an M2 phenotype. Immunol Res 69, 334–351 (2021). https://doi.org/10.1007/s12026-021-09209-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-021-09209-0

Keywords

Navigation