Skip to main content

Advertisement

Log in

Regulation of KRAS protein expression by miR-544a and KRAS-LCS6 polymorphism in wild-type KRAS sporadic colon adenocarcinoma

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Colorectal carcinoma (CRC) results from the accumulation of genetic mutations and alterations in signaling pathways. KRAS is mutated in 40% of CRC cases and is involved in increased tumor cells proliferation and survival. Although KRAS mutations are a dominant event in CRC tumorigenesis, increased wild-type KRAS expression has a similar effect on accelerated tumor growth. In this study, we investigated the KRAS status in correlation with clinicopathological features in sporadic CRC and more importantly the role of let-7a-5p and miR-544a-3p in the regulation of wild-type KRAS protein expression in the tumor center (T1) and invasive tumor front (T2). Analysis showed that 39.1% of tumor samples had KRAS mutations. In wild-type KRAS tumors, 62.0% were positive for KRAS protein expression and there was a higher percentage of KRAS-positive tumor cells and a higher intensity of immunohistochemical reaction in T2 than in T1 samples. This could not be attributed to differences in KRAS mRNA levels, suggesting regulation via miR-544a-3p expression which was significantly decreased in T2 samples. Furthermore, we demonstrated that tumor samples carrying the KRAS-LCS6 variant allele had significantly higher protein expression of the wild-type KRAS. Our results suggest the role of the KRAS-LCS6 polymorphism and miR-544a-3p expression in the regulation of wild-type KRAS protein expression in sporadic CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    PubMed  Google Scholar 

  2. Mondaca S, Yaeger R. Colorectal cancer genomics and designing rational trials. Ann Transl Med. 2018;6(9):159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49. 

  4. Tsilimigras DI, Ntanasis-Stathopoulos I, Bagante F, Moris D, Cloyd J, Spartalis E, et al. Clinical significance and prognostic relevance of KRAS, BRAF, PI3K and TP53 genetic mutation analysis for resectable and unresectable colorectal liver metastases: a systematic review of the current evidence. Surg Oncol. 2018;27(2):280–8.

    Article  PubMed  Google Scholar 

  5. Guerrero S, Casanova I, Farre L, Mazo A, Capella G, Mangues R. K-ras codon 12 mutation induces higher level of resistance to apoptosis and predisposition to anchorage-independent growth than codon 13 mutation or proto-oncogene overexpression. Cancer Res. 2000;60(23):6750–6.

    CAS  PubMed  Google Scholar 

  6. Horsch M, Recktenwald CV, Schadler S, Hrabe de Angelis M, Seliger B, Beckers J. Overexpressed vs mutated Kras in murine fibroblasts: a molecular phenotyping study. Br J Cancer. 2009;100(4):656–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou B, Der CJ, Cox AD. The role of wild type RAS isoforms in cancer. Semin Cell Dev Biol. 2016;58:60–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roncarati R, Lupini L, Shankaraiah RC, Negrini M. The importance of microRNAs in RAS oncogenic activation in human cancer. Front Oncol. 2019;9:988.

    Article  PubMed  PubMed Central  Google Scholar 

  9. You C, Liang H, Sun W, Li J, Liu Y, Fan Q, et al. Deregulation of the miR-16-KRAS axis promotes colorectal cancer. Sci Rep. 2016;6:37459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim M, Slack FJ. MicroRNA-mediated regulation of KRAS in cancer. J Hematol Oncol. 2014;7:84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120(5):635–47.

    Article  CAS  PubMed  Google Scholar 

  12. Ma R, Zhang G, Wang H, Lv H, Fang F, Kang X. Downregulation of miR-544 in tissue, but not in serum, is a novel biomarker of malignant transformation in glioma. Oncol Lett. 2012;4(6):1321–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Yanaka Y, Muramatsu T, Uetake H, Kozaki K, Inazawa J. miR-544a induces epithelial-mesenchymal transition through the activation of WNT signaling pathway in gastric cancer. Carcinogenesis. 2015;36(11):1363–71.

    Article  CAS  PubMed  Google Scholar 

  14. Liang D, Meyer L, Chang DW, Lin J, Pu X, Ye Y, et al. Genetic variants in MicroRNA biosynthesis pathways and binding sites modify ovarian cancer risk, survival, and treatment response. Can Res. 2010;70(23):9765–76.

    Article  CAS  Google Scholar 

  15. Gottmann P, Ouni M, Zellner L, Jahnert M, Rittig K, Walther D, et al. Polymorphisms in miRNA binding sites involved in metabolic diseases in mice and humans. Sci Rep. 2020;10(1):7202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jacinta-Fernandes A, Xavier JM, Magno R, Lage JG, Maia AT. Allele-specific miRNA-binding analysis identifies candidate target genes for breast cancer risk. NPJ Genom Med. 2020;5:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gholami M, Larijani B, Sharifi F, Hasani-Ranjbar S, Taslimi R, Bastami M, et al. MicroRNA-binding site polymorphisms and risk of colorectal cancer: a systematic review and meta-analysis. Cancer Med. 2019;8(17):7477–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sclafani F, Chau I, Cunningham D, Peckitt C, Lampis A, Hahne JC, et al. Prognostic role of the LCS6 KRAS variant in locally advanced rectal cancer: results of the EXPERT-C trial. Ann Oncol. 2015;26(9):1936–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ryan BM, Robles AI, Harris CC. KRAS-LCS6 genotype as a prognostic marker in early-stage CRC–letter. Clin Cancer Res. 2012;18(12):3487–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Usher-Smith JA, Walter FM, Emery JD, Win AK, Griffin SJ. Risk prediction models for colorectal cancer: a systematic review. Cancer Prev Res (Phila). 2016;9(1):13–26.

    Article  CAS  Google Scholar 

  21. Dou R, Nishihara R, Cao Y, Hamada T, Mima K, Masuda A, et al. MicroRNA let-7, T cells, and patient survival in colorectal cancer. Cancer Immunol Res. 2016;4(11):927–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luu C, Heinrich EL, Duldulao M, Arrington AK, Fakih M, Garcia-Aguilar J, et al. TP53 and let-7a micro-RNA regulate K-Ras activity in HCT116 colorectal cancer cells. PLoS ONE. 2013;8(8):70604.

    Article  CAS  Google Scholar 

  23. Sha D, Lee AM, Shi Q, Alberts SR, Sargent DJ, Sinicrope FA, et al. Association study of the let-7 miRNA-complementary site variant in the 3’ untranslated region of the KRAS gene in stage III colon cancer (NCCTG N0147 Clinical Trial). Clin Cancer Res. 2014;20(12):3319–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fang C, Li Y. Prospective applications of microRNAs in oral cancer. Oncol Lett. 2019;18(4):3974–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ghosh RD, Pattatheyil A, Roychoudhury S. Functional landscape of dysregulated microRNAs in oral squamous cell carcinoma: clinical implications. Front Oncol. 2020;10:619.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Paterson EL, Kazenwadel J, Bert AG, Khew-Goodall Y, Ruszkiewicz A, Goodall GJ. Down-regulation of the miRNA-200 family at the invasive front of colorectal cancers with degraded basement membrane indicates EMT is involved in cancer progression. Neoplasia. 2013;15(2):180–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Spaventi R, Pecur L, Pavelic K, Pavelic ZP, Spaventi S, Stambrook PJ. Human tumour bank in Croatia: a possible model for a small bank as part of the future European tumour bank network. Eur J Cancer. 1994;30A(3):419.

    Article  CAS  PubMed  Google Scholar 

  28. Nollau P, Moser C, Weinland G, Wagener C. Detection of K-ras mutations in stools of patients with colorectal cancer by mutant-enriched PCR. Int J Cancer. 1996;66(3):332–6.

    Article  CAS  PubMed  Google Scholar 

  29. Saridaki Z, Weidhaas JB, Lenz HJ, Laurent-Puig P, Jacobs B, De Schutter J, et al. A let-7 microRNA-binding site polymorphism in KRAS predicts improved outcome in patients with metastatic colorectal cancer treated with salvage cetuximab/panitumumab monotherapy. Clin Cancer Res. 2014;20(17):4499–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.

    CAS  PubMed  Google Scholar 

  31. D’Agostino RB, Belanger A, D’Agostino RB Jr. A suggestion for using powerful and informative test of normality. Am Stat. 1990;44(4):316–21.

    Google Scholar 

  32. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10(8):789–99.

    Article  CAS  PubMed  Google Scholar 

  33. Crespo P, Leon J. Ras proteins in the control of the cell cycle and cell differentiation. Cell Mol Life Sci. 2000;57(11):1613–36.

    Article  CAS  PubMed  Google Scholar 

  34. Tuveson DA, Shaw AT, Willis NA, Silver DP, Jackson EL, Chang S, et al. Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell. 2004;5(4):375–87.

    Article  CAS  PubMed  Google Scholar 

  35. Valtorta E, Misale S, Sartore-Bianchi A, Nagtegaal ID, Paraf F, Lauricella C, et al. KRAS gene amplification in colorectal cancer and impact on response to EGFR-targeted therapy. Int J Cancer. 2013;133(5):1259–65.

    Article  CAS  PubMed  Google Scholar 

  36. Serebriiskii IG, Connelly C, Frampton G, Newberg J, Cooke M, Miller V, et al. Comprehensive characterization of RAS mutations in colon and rectal cancers in old and young patients. Nat Commun. 2019;10(1):3722.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Guo F, Gong H, Zhao H, Chen J, Zhang Y, Zhang L, et al. Mutation status and prognostic values of KRAS, NRAS, BRAF and PIK3CA in 353 Chinese colorectal cancer patients. Sci Rep. 2018;8(1):6076.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Chuang SC, Huang CW, Chen YT, Ma CJ, Tsai HL, Chang TK, et al. Effect of KRAS and NRAS mutations on the prognosis of patients with synchronous metastatic colorectal cancer presenting with liver-only and lung-only metastases. Oncol Lett. 2020;20(3):2119–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu P, Wang Y, Li X. Targeting the untargetable KRAS in cancer therapy. Acta Pharm Sin B. 2019;9(5):871–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Piton N, Lonchamp E, Nowak F, Sabourin JC. Real-life distribution of KRAS and NRAS mutations in metastatic colorectal carcinoma from French routine genotyping. Cancer Epidemiol Biomarkers Prev. 2015;24(9):1416–8.

    Article  CAS  PubMed  Google Scholar 

  41. van Wyk HC, Roseweir A, Alexander P, Park JH, Horgan PG, McMillan DC, et al. The relationship between tumor budding, tumor microenvironment, and survival in patients with primary operable colorectal cancer. Ann Surg Oncol. 2019;26(13):4397–404.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ozer SP, Barut SG, Ozer B, Catal O, Sit M. The relationship between tumor budding and survival in colorectal carcinomas. Rev Assoc Med Bras (1992). 2019;65(12):1442–7.

    Article  Google Scholar 

  43. Dawson H, Lugli A. Molecular and pathogenetic aspects of tumor budding in colorectal cancer. Front Med (Lausanne). 2015;2:11.

    Google Scholar 

  44. Trinh A, Ladrach C, Dawson HE, Ten Hoorn S, Kuppen PJK, Reimers MS, et al. Tumour budding is associated with the mesenchymal colon cancer subtype and RAS/RAF mutations: a study of 1320 colorectal cancers with Consensus Molecular Subgroup (CMS) data. Br J Cancer. 2018;119(10):1244–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maffeis V, Nicole L, Cappellesso R. RAS, cellular plasticity, and tumor budding in colorectal cancer. Front Oncol. 2019;9:1255.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rimbert J, Tachon G, Junca A, Villalva C, Karayan-Tapon L, Tougeron D. Association between clinicopathological characteristics and RAS mutation in colorectal cancer. Mod Pathol. 2018;31(3):517–26.

    Article  CAS  PubMed  Google Scholar 

  47. Rosty C, Young JP, Walsh MD, Clendenning M, Walters RJ, Pearson S, et al. Colorectal carcinomas with KRAS mutation are associated with distinctive morphological and molecular features. Mod Pathol. 2013;26(6):825–34.

    Article  CAS  PubMed  Google Scholar 

  48. Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486(7404):532–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Elsabah MT, Adel I. Immunohistochemical assay for detection of K-ras protein expression in metastatic colorectal cancer. J Egypt Natl Canc Inst. 2013;25(1):51–6.

    Article  PubMed  Google Scholar 

  50. Piton N, Borrini F, Bolognese A, Lamy A, Sabourin JC. KRAS and BRAF Mutation Detection: Is Immunohistochemistry a Possible Alternative to Molecular Biology in Colorectal Cancer? Gastroenterol Res Pract. 2015;2015:753903.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dhawan A, Scott JG, Harris AL, Buffa FM. Pan-cancer characterisation of microRNA across cancer hallmarks reveals microRNA-mediated downregulation of tumour suppressors. Nat Commun. 2018;9(1):5228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Niveditha D, Jasoria M, Narayan J, Majumder S, Mukherjee S, Chowdhury R, et al. Common and unique microRNAs in multiple carcinomas regulate similar network of pathways to mediate cancer progression. Sci Rep. 2020;10(1):2331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jevsinek Skok D, Hauptman N, Bostjancic E, Zidar N. The integrative knowledge base for miRNA-mRNA expression in colorectal cancer. Sci Rep. 2019;9(1):18065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fadaka AO, Pretorius A, Klein A. MicroRNA assisted gene regulation in colorectal cancer. Int J Mol Sci. 2019;20(19):4899.

  55. Moszynska A, Gebert M, Collawn JF, Bartoszewski R. SNPs in microRNA target sites and their potential role in human disease. Open Biol. 2017;7(4):170019.

  56. Chin LJ, Ratner E, Leng SG, Zhai RH, Nallur S, Babar I, et al. A SNP in a let-7 microRNA complementary site in the KRAS 3’ untranslated region increases non-small cell lung cancer risk. Can Res. 2008;68(20):8535–40.

    Article  CAS  Google Scholar 

  57. Chen M, Liu YY, Zheng MQ, Wang XL, Gao XH, Chen L, et al. microRNA-544 promoted human osteosarcoma cell proliferation by downregulating AXIN2 expression. Oncol Lett. 2018;15(5):7076–82.

    PubMed  PubMed Central  Google Scholar 

  58. Smits KM, Paranjape T, Nallur S, Wouters KA, Weijenberg MP, Schouten LJ, et al. A let-7 microRNA SNP in the KRAS 3’UTR is prognostic in early-stage colorectal cancer. Clin Cancer Res. 2011;17(24):7723–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Christensen BC, Moyer BJ, Avissar M, Ouellet LG, Plaza SL, McClean MD, et al. A let-7 microRNA-binding site polymorphism in the KRAS 3’ UTR is associated with reduced survival in oral cancers. Carcinogenesis. 2009;30(6):1003–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liang D, Meyer L, Chang DW, Lin J, Pu X, Ye Y, et al. Genetic variants in MicroRNA biosynthesis pathways and binding sites modify ovarian cancer risk, survival, and treatment response. Cancer Res. 2010;70(23):9765–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ganzinelli M, Rulli E, Caiola E, Garassino MC, Broggini M, Copreni E, et al. Role of KRAS-LCS6 polymorphism in advanced NSCLC patients treated with erlotinib or docetaxel in second line treatment (TAILOR). Sci Rep. 2015;5:16331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nelson HH, Christensen BC, Plaza SL, Wiencke JK, Marsit CJ, Kelsey KT. KRAS mutation, KRAS-LCS6 polymorphism, and non-small cell lung cancer. Lung Cancer. 2010;69(1):51–3.

    Article  CAS  PubMed  Google Scholar 

  63. Uvirova M, Simova J, Kubova B, Dvorackova N, Tomaskova H, Sedivcova M, et al. Comparison of the prevalence of KRAS-LCS6 polymorphism (rs61764370) within different tumour types (colorectal, breast, non-small cell lung cancer and brain tumours). A study of the Czech population. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015;159(3):466–71.

    Article  PubMed  Google Scholar 

Download references

Funding

The present study was supported by the Croatian Science Foundation (Grant number HRZZ-IP-2016-06-1430).

Author information

Authors and Affiliations

Authors

Contributions

SM: investigation, formal analysis, and writing—original draft, AŠ: resources, formal analysis, and visualization, TCI: investigation and formal analysis, MP: resources, SK: conceptualization, funding acquisition, and writing—reviewing and editing.

Corresponding author

Correspondence to Sanja Kapitanović.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval and informed consent to participate

Written informed consent was obtained from all patients included in the study. The study was approved by the ethics committee of Merkur Clinical Hospital, Zagreb and Medical School, University of Zagreb, and was performed under the ethical standards of the Helsinki Declaration.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marinović, S., Škrtić, A., Catela Ivković, T. et al. Regulation of KRAS protein expression by miR-544a and KRAS-LCS6 polymorphism in wild-type KRAS sporadic colon adenocarcinoma. Human Cell 34, 1455–1465 (2021). https://doi.org/10.1007/s13577-021-00576-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00576-2

Keywords

Navigation