Skip to main content
Log in

Quantum parallel teleportation of multi-qudit state via different paths

  • Regular Article - Quantum Information
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We propose a novel scheme of quantum parallel teleportation for arbitrary unknown multi-qudit states under the principal of flow split. With the assistance of the central server and the pre-shared entanglement distributed between the intermediate nodes in each path, any arbitrary unknown multi-qudit state can be successfully restored by the final receiver via parallel transmission through various paths. Due to parallel teleportation with distinct paths, this quantum network teleportation can resist network congestion. In addition, only two-qudit measurements are required by the intermediate nodes and the sender node and only one-qudit unitary operation is required by the destination node which reduces the technical requirements of network nodes and makes our protocol more practical and flexible. The analysis also demonstrates that our propose scheme can achieve a good performance in terms of communication cost and time delay. Finally, the unknown states of multiple qudits with hybrid dimensions could be teleported via quantum channels with different dimensions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has data included as electronic supplementary material. The online version of this article contains supplementary material, which is available to authorized users.

References

  1. Y.L. Zhang, Y.N. Wang, X.R. Xiao et al., Quantum network teleportation for quantum information distribution and concentration. Phys. Rev. A 87, 022302-1-022302–6 (2013)

    ADS  Google Scholar 

  2. Z.Z. Li, G. Xu, X.B. Chen et al., Multi-user quantum wireless network communication based on multi-qudit GHZ state. IEEE Commun. Lett. 20, 2470–2473 (2016)

    Article  Google Scholar 

  3. R.V. Meter, Quantum networking and internetworking. IEEE Netw. 26, 59–64 (2012)

    Article  Google Scholar 

  4. R.V. Meter, S.J. Devitt, The path to scalable distributed quantum computing. IEEE Comput. Soc. 49, 31–42 (2016)

    Article  Google Scholar 

  5. P.Y. Xiong, X.T. Yu, Z.C. Zhang et al., Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state. Frontiers Phys. 12, 187–196 (2017)

    Article  Google Scholar 

  6. Y.H. Chou, G.J. Zeng, F.J. Lin et al., Quantum secure communication network protocol with entangled photons for mobile communications. Mobile Netw. Appl. 19, 121–130 (2014)

    Article  Google Scholar 

  7. D. Alanis, P. Botsinis, S.X. Ng et al., Quantum-assisted routing optimization for self-organizing networks. IEEE Access 2, 614–632 (2014)

    Article  Google Scholar 

  8. J. Bouda, V. Buzek, Entanglement swapping between multiqudit systems. J. Phys. A General Phys. 34, 4301–4311 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. S. Hassanpour, M. Houshmand, Bidirectional quantum teleportation via entanglement swapping. Electrical Engineering. IEEE 501–503 (2015)

  10. L. Hardy, D.D. Song, Entanglement-swapping chains for general pure states. Phys. Rev. A 62, 2315-1-2315–7 (2000)

    Article  ADS  Google Scholar 

  11. B. Zhang, X. Liu, J. Wang et al., Quantum teleportation of a three-qubit state using a four-qubit entangled state. Int. Conf. Comput. 53, 4079–4082 (2015)

    Google Scholar 

  12. X.T. Yu, Z.C. Zhang, J. Xu, Distributed wireless quantum communication networks with partially entangled pairs. Chin. Phys. B 22, 66–73 (2014)

    Google Scholar 

  13. L.H. Shi, X.T. Yu, X.F. Cai, Y.X. Gong, Z.C. Zhang, Quantum information transmission in the quantum wireless multihop network based on Werner state. Chin. Phys. B 24, 247–251 (2015)

    Article  Google Scholar 

  14. X.F. Cai, X.T. Yu, L.H. Shi, Z.C. Zhang, Partially entangled states bridge in quantum teleportation. Front. Phys 9, 646–651 (2014)

    Article  ADS  Google Scholar 

  15. K. Wang, X.T. Yu, S.L. Lu, Y.X. Gong, Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation. Phys. Rev. A 82, 022329-1-022329–10 (2014)

    ADS  Google Scholar 

  16. P.Y. Xiong, X.T. Yu, H.T. Zhan, Z.C. Zhang, Multiple teleportation via partially entangled GHZ state. Front. Phys 11, 1–8 (2016)

    Article  Google Scholar 

  17. D. Saha, P. Panigrahi, N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel. Quantum Inf. Process 11, 615–628 (2011)

    Article  MathSciNet  Google Scholar 

  18. Z.Z. Zou, Z.T. Yu, Y.X. Gong et al., Multihop teleportation of two-qubit state via the composite GHZ-Bell channel. Phys. Lett. A 381, 76–81 (2016)

    Article  MATH  ADS  Google Scholar 

  19. M.M. Cola, G.A. Paris Matteo, N. Piovella, Robust generation of entanglement in Bose-Einstein condensate by collective atomic recoil. Phys. Rev. A 70, 3809-1-3809–13 (2004)

    Article  Google Scholar 

  20. S. Akibue, M. Murao, Network coding for distributed quantum computation over cluster and butterfly networks. IEEE Trans. Inf. Theory 62, 1–1 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Q. Li, D.Y. Long, W.H. Chan, D.W. Qiu, Sharing a quantum secret without a trusted party. Quantum Inf. Process 10, 97–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Wallnöfer, M. Zwerger, C. Muschik, N. Sangouard, W. Dür, Two-dimensional quantum repeaters. Phys. Rev. A 94, 052307 (2016)

    Article  ADS  Google Scholar 

  23. S.E. Vinay, P. Kok, Practical repeaters for ultralongdistance quantum communication. Phys. Rev. A 95, 052336 (2017)

    Article  ADS  Google Scholar 

  24. J.F. Li, J.M. Liu, X.Y. Xu, Deterministic joint remote preparation of an arbitrary two-qubit state in noisy environments. Quant. Inf. Process. 14, 3465 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. X. Gao, Z. Zhang, Y. Gong, B. Sheng, X. Yu, Teleportation of entanglement using a three-particle entangled w state. J. Opt. Soc. Am. B, Opt. Phys 34, 142 (2017)

    Article  ADS  Google Scholar 

  26. H.M. Oubei, R.T. EIAfandy, K.H. Park, M.S. Alouini, B.S. Ooi, Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations. IEEE Photonics J. 9, 1–9 (2017)

    Article  Google Scholar 

  27. S. Li, S. Zhao, X. Wang et al., Adaptive and secure loadbalancing routing protocol for service-oriented wireless sensor networks. IEEE Syst. J. 8, 858–867 (2014)

    Article  ADS  Google Scholar 

  28. O. Nevzorova, T. Vavenko, F.A. Arif, Hierarchical method of load-balancing routing in MPLS network, In Scientific Practical Conference Problems of Info communications, 434-438 (Oct. 2017 4th International)

  29. L. Hong, O.A. Mehmet, X. Jing-Hua, P. Josef, X. Li-Yin, Dynamic (2, 3) threshold quantum secret sharing of secure direct communication. Commun. Theor. Phys 63, 459–465 (2015)

    Article  MATH  ADS  Google Scholar 

  30. C.P. Yang, S.Y. Han, A scheme for the teleportation of multi qubit quantum information via the control of many agents in a network. Phys. Lett. A 343, 267–273 (2005)

    Article  MATH  ADS  Google Scholar 

  31. R. Van Meter, Joe Touch, Designing quantum repeater networks. IEEE Commun. 51, 64–71 (2013)

    Article  Google Scholar 

  32. M. Jiang, H. Li, Z.K. Zhang, J. Zeng, Faithful teleportation of multi-particle states involving multi spatially remote agents via probabilistic channels. Physica A: Stat. Mech. Its Appl. 390, 760–768 (2011)

    Article  ADS  Google Scholar 

  33. Y.L. Wang, D.Y. Dong, I.R. Petersen, H. Yonezawa, P. Cappellaro, Quantum hamiltonian identifiability via a similarity transformation approach and beyond. IEEE Trans. Autom. Control 65, 12 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. D. Dong, C. Chen, T.J. Tarn, A. Pechen, H. Rabitz, Incoherent control of quantum systems with wave function controllable subspaces via quantum reinforcement learning. IEEE Trans. Syst., Man, Cybern., Part B: Cybern 38, 957–962 (2008)

    Article  Google Scholar 

  35. R.B. Wu, H. Rabitz, Control landscapes for open system quantum operations. J. Phys. A, Math. Theor 45, 485303 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Cong, F. Yang, Control of quantum states in decoherencefree subspaces. J. Phys. A, Math. Theory 46, 075305 (2013)

    Article  MATH  ADS  Google Scholar 

  37. B. Qi, H. Pan, L. Guo, Further results on stabilizing control of quantum systems. IEEE Trans. Autom. Control 58, 1349–1354 (2013)

    Article  Google Scholar 

  38. H. Rabitz, Optimal control of quantum systems: origins of inherent robustness to control field fluctuations. Phys. Rev. A 66, 063405063405 (2002)

    Article  ADS  Google Scholar 

  39. Y. Wang, D. Dong, B. Qi, J. Zhang, I.R. Petersen, H. Yonezawa, A quantum Hamiltonian identification algorithm: computational complexity and error analysis. IEEE Trans. Autom. Control 63, 1388–1403 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. D. Dong, X. Xing, H. Ma, C. Chen, Z. Liu, H. Rabitz, Learning-based quantum robust control: algorithm, applications, and experiments. IEEE Trans. Cybern. 50, 3581–3593 (2020)

    Article  Google Scholar 

  41. J. Li, D. Dong, Z. Wei, Y. Liu, Y. Pan, F. Nori, X. Zhang, Quantum reinforcement learning during human decisionmaking. Nature Human Behaviour 4, 294–307 (2020)

    Article  Google Scholar 

  42. C.C. Shu, Y. Guo, K.J. Yuan, D. Dong, A.D. Bandrau, second all-optical control and visualization of quantum interference between degenerate magnetic states by circularly polarized pulses. Opt. Lett. 45, 960963 (2020)

    Article  ADS  Google Scholar 

  43. R.B. Wu, H. Ding, D. Dong, X. Wang, Learning robust and high-precision quantum controls. Phys. Rev. A 99, 042327-1-042327–6 (2019)

    Article  ADS  Google Scholar 

  44. S. Xue, R. Wu, M. Shan, D. Li, M. Jiang, Gradient algorithm for Hamiltonian identification of open quantum systems. Phys. Rev. A 103(02), 022604 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  45. S. Xue, L. Tan, R. Wu, M. Jiang, I.R. Petersen, Inversesystem method for identification of damping rate functions in non-Markovian quantum systems. Phys. Rev. A 102(04), 042227 (2020)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Tang Scholar Project of Soochow University, the National Natural Science Foundation of China, under Grant 61873162 and in part by the Key Laboratory of System Control and Information Processing, Ministry of Education, China, under Grant Scip201804.

Author information

Authors and Affiliations

Authors

Contributions

W.-y. Zhen, H.-y. Li and S.-b. Xue conceived the project. Q. Liu and M. Jiang performed the calculation and analysis. Q. Liu and M. Jiang wrote and revised the paper.

Corresponding author

Correspondence to Min Jiang.

Additional information

This manuscript has data included as electronic supplementary material. The online version of this article contains supplementary material, which is available to authorized users.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Wei, Y., Li, H. et al. Quantum parallel teleportation of multi-qudit state via different paths. Eur. Phys. J. D 75, 198 (2021). https://doi.org/10.1140/epjd/s10053-021-00210-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00210-8

Navigation