Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Optimisation of Iron Oxide Nanoparticles for Agglomeration and Blockage in Aqueous Flow Systems

Lila M. Landowski A , Karen L. Livesey B , Olivier Bibari A , Allanna M. Russell https://orcid.org/0000-0003-3057-3443 A , Madeleine R. Taylor C , Curtis C. Ho C , David W. Howells A and Rebecca O. Fuller https://orcid.org/0000-0003-3926-8680 C D
+ Author Affiliations
- Author Affiliations

A Tasmanian School of Medicine, University of Tasmania, Hobart, Tas. 7005, Australia.

B School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.

C School of Natural Sciences – Chemistry, University of Tasmania, Hobart, Tas. 7005, Australia.

D Corresponding author. Email: rebecca.fuller@utas.edu.au




Becky graduated from the University of Western Australia with a B.Sc. (Hons) in 2002. She went on to complete a Ph.D. (UWA 2010) in synthetic chemistry and condensed matter physics under the guidance of Professor George Koutsantonis and Professor Robert Stamps. Following this, she undertook post-doctoral research, before being awarded an independent research fellowship (2014–2018) at the same institution. She then moved to Curtin University (2018–2019) to work as an ARC DECRA recipient in the School of Molecular and Life Sciences. Becky was appointed as Senior Lecturer in Chemistry at the University of Tasmania in September 2019.

Australian Journal of Chemistry 75(2) 102-110 https://doi.org/10.1071/CH21061
Submitted: 4 March 2021  Accepted: 5 June 2021   Published: 7 July 2021

Abstract

The translation of nanoparticles to useful applications is often hindered by the reliability of synthetic methodologies to reproducibly generate larger particles of uniform size (diameter > 20 nm). The inability to precisely control nanoparticle crystallinity, size, and shape has significant implications on observed properties and therefore applications. A series of iron oxide particles have been synthesised and the impact of size as they agglomerate in aqueous media undergoing flow through a capillary tube has been studied. Reaction conditions for the production of large (side length > 40 nm) cubic magnetite (Fe3O4) have been optimised to produce particles with different diameters up to 150 nm. We have focussed on reproducibility in synthesis rather than dispersity of the size distribution. A simple oxidative cleavage of the as-synthesised particles surfactant coating transforms the hydrophobic oleic acid coated Fe3O4 to a hydrophilic system based on azelaic acid. The hydrophilic coating can be further functionalised, in this case we have used a simple biocompatible polyethylene glycol (PEG) coating. The ability of particles to either chain, flow, and fully/or partially aggregate in aqueous media has been tested in a simple in-house system made from commercial components. Fe3O4 nanoparticles (60–85 nm) with a simple PEG coating were found to freely flow at a 2 mm distance from a magnet over 3 min at a rate of 1 mL min−1. Larger particles with side lengths of ~150 nm, or those without a PEG coating were not able to fully block the tube. Simple calculations have been performed to support these observations of magnetic agglomeration.

Keywords: magnetite, nanoparticles, iron oxide, synthesis, aqueous flow, agglomeration, chaining, biocompatible, capillary.


References

[1]  M. C. Roco, J. Nanopart. Res. 2011, 13, 427.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  D. V. Talapin, E. V. Schevchenko, Chem. Rev. 2016, 116, 10343.
         | Crossref | GoogleScholarGoogle Scholar | 27677520PubMed |

[3]  R. P. Feynman, Eng. Sci. 1960, 23, 22.

[4]  S. Horikoshi, N. Serpone, Introduction to Nanoparticles: Microwaves in Nanoparticle Synthesis 2013 (Wiley Online Books: Hoboken, NJ).

[5]  R. O. Fuller, G. A. Koutsantonis, R. L. Stamps, F. Bardou, J. Appl. Phys. 2005, 97, 10J508.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  R. O. Fuller, G. A. Koutsantonis, R. L. Stamps, J. Phys. Condens. Matter 2009, 21, 124203.
         | Crossref | GoogleScholarGoogle Scholar | 21817445PubMed |

[7]  X. Han, K. Xu, O. Taratula, K. Farsad, Nanoscale 2019, 11, 799.
         | Crossref | GoogleScholarGoogle Scholar | 30603750PubMed |

[8]  A. Z. Wilczewska, K. Niemirowicz, K. H. Markiewicz, H. Car, Pharmacol. Rep. 2012, 64, 1020.
         | Crossref | GoogleScholarGoogle Scholar | 23238461PubMed |

[9]  E. Blanco, H. Shen, M. Ferrari, Nat. Biotechnol. 2015, 33, 941.
         | Crossref | GoogleScholarGoogle Scholar | 26348965PubMed |

[10]  N. S. Hondow, G. A. Koutsantonis, R. O. Fuller, H. Fansuri, M. Saunders, R. L. Stamps, D. Zhang, New J. Chem. 2010, 34, 1286.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  J. Shi, Chem. Rev. 2013, 113, 2139.
         | Crossref | GoogleScholarGoogle Scholar | 23190123PubMed |

[12]  M. Sushruth, J. Ding, J. Duczynski, R. C. Woodward, R. A. Begley, H. Fangohr, R. O. Fuller, A. O. Adeyeye, M. Kostylev, P. J. Metaxas, Phys. Rev. Appl. 2016, 6, 044005.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  G. De Falco, R. Ciardiello, M. Commodo, P. Del Gaudio, P. Minutolo, A. Porta, A. D’Anna, Surf. Coat. Tech. 2018, 349, 830.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  I. Matsui, J. Chem. Eng. of Jpn 2005, 38, 535.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  H. Wang, X. Liang, J. Wang, S. Jiao, D. Xue, Nanoscale 2020, 12, 14.
         | Crossref | GoogleScholarGoogle Scholar | 31808494PubMed |

[16]  J. Alonso, J. M. Barandiarán, L. Fernández Barquín, A. García-Arribas, in Magnetic Nanostructured Materials (Eds A. A. El-Gendy, J. M. Barandiarán, R. L. Hadimani) 2018, Ch. 1, pp. 1–40 (Elsevier: Amsterdam).

[17]  J. Frenkel, J. Doefman, Nature 1930, 126, 274.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  K. Goto, T. Sakurai, Appl. Phys. Lett. 1977, 30, 355.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  K. Goto, M. Ito, T. Sakurai, Jpn. J. Appl. Phys. 1980, 19, 1339.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  M. Respaud, J. M. Broto, H. Rakoto, A. R. Fert, L. Thomas, B. Barbara, M. Verelst, E. Snoeck, P. Lecante, A. Mosset, J. Osuna, T. O. Ely, C. Amiens, B. Chaudret, Phys. Rev. B Condens. Matter Mater. Phys. 1998, 57, 2925.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  D. R. Baer, Front Chem. 2018, 6, 145.
         | Crossref | GoogleScholarGoogle Scholar | 29868553PubMed |

[22]  A. P. Kauling, A. T. Seefeldt, D. P. Pisoni, R. C. Pradeep, R. Bentini, R. V. B. Oliveira, K. S. Novoselov, A. H. Castro Neto, Adv. Mater. 2018, 30, 1803784.
         | Crossref | GoogleScholarGoogle Scholar | 30209839PubMed |

[23]  M. Iranmanesh, J. Hulliger, Chem. Soc. Rev. 2017, 46, 5925.
         | Crossref | GoogleScholarGoogle Scholar | 28730213PubMed |

[24]  J. Wang, S. Zheng, Y. Shao, J. Liu, Z. Xu, D. Zhu, J. Colloid Interface Sci. 2010, 349, 293.
         | Crossref | GoogleScholarGoogle Scholar | 20542278PubMed |

[25]  S. Singamaneni, V. N. Bliznyuk, C. Binek, E. Y. Tsymbal, J. Mater. Chem. 2011, 21, 16819.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  A.-H. Lu, E. L. Salabas, F. Schüth, Angew. Chem. Int. Ed. 2007, 46, 1222.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  S. M. Dadfar, K. Roemhild, N. I. Drude, S. von Stillfried, R. Knüchel, F. Kiessling, T. Lammers, Adv. Drug Deliv. Rev. 2019, 138, 302.
         | Crossref | GoogleScholarGoogle Scholar | 30639256PubMed |

[28]  Y.-X. J. Wang, Quant. Imaging Med. Surg. 2011, 1, 35.

[29]  Q. Li, C. W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, K. Okuyama, Sci. Rep. 2017, 7, 9894.
         | Crossref | GoogleScholarGoogle Scholar | 28855564PubMed |

[30]  Z. Nedelkoski, D. Kepaptsoglou, L. Lari, T. Wen, R. A. Booth, S. D. Oberdick, P. L. Galindo, Q. M. Ramasse, R. F. L. Evans, S. Majetich, V. K. Lazarov, Sci. Rep. 2017, 7, 45997.
         | Crossref | GoogleScholarGoogle Scholar | 28393876PubMed |

[31]  R. O. Fuller, B.-M. Goh, G. A. Koutsantonis, M. J. Loedolff, M. Saunders, R. C. Woodward, Dalton Trans. 2016, 45, 11983.
         | Crossref | GoogleScholarGoogle Scholar | 27385657PubMed |

[32]  M. J. Loedolff, B.-M. Goh, G. A. Koutsantonis, R. O. Fuller, New J. Chem. 2018, 42, 14894.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  R. M. Crist, J. H. Grossman, A. K. Patri, S. T. Stern, M. A. Dobrovolskaia, P. P. Adiseshaiah, J. D. Clogston, S. E. McNeil, Integr. Biol. 2013, 5, 66.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  L. M. Landowski, B. e. Niego, B. A. Sutherland, C. E. Hagemeyer, D. W. Howells, Semin. Thromb. Hemost. 2020, 46, 592.
         | Crossref | GoogleScholarGoogle Scholar | 31858516PubMed |

[35]  M. Suciu, C. M. Ionescu, A. Ciorita, S. C. Tripon, D. Nica, H. Al-Salami, L. Barbu-Tudoran, Beilstein J. Nanotechnol. 2020, 11, 1092.
         | Crossref | GoogleScholarGoogle Scholar | 32802712PubMed |

[36]  D. Kim, N. Lee, M. Park, B. H. Kim, K. An, T. Hyeon, J. Am. Chem. Soc. 2009, 131, 454.
         | Crossref | GoogleScholarGoogle Scholar | 19099480PubMed |

[37]  L. Qiao, Z. Fu, J. Li, J. Ghosen, M. Zeng, J. Stebbins, P. N. Prasad, M. T. Swihart, ACS Nano 2017, 11, 6370.
         | Crossref | GoogleScholarGoogle Scholar | 28599110PubMed |

[38]  J. Muro-Cruces, A. G. Roca, A. López-Ortega, E. Fantechi, D. del-Pozo-Bueno, S. Estradé, F. Peiró, B. Sepúlveda, F. Pineider, C. Sangregorio, J. Nogues, ACS Nano 2019, 13, 7716.
         | Crossref | GoogleScholarGoogle Scholar | 31173684PubMed |

[39]  I. Ali, Chem. Rev. 2012, 112, 5073.
         | Crossref | GoogleScholarGoogle Scholar | 22731247PubMed |

[40]  D. I. Santiago-Quinones, K. Raj, C. Rinaldi, Rheol. Acta 2013, 52, 719.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  E. M. Shabanova, A. S. Drozdov, A. F. Fakhardo, I. P. Dudanov, M. S. Kovalchuk, V. V. Vinogradov, Sci. Rep. 2018, 8, 233.
         | Crossref | GoogleScholarGoogle Scholar | 29321571PubMed |

[42]  U. I. Tromsdorf, O. T. Bruns, S. C. Salmen, U. Beisiegel, H. Weller, Nano Lett. 2009, 9, 4434.
         | Crossref | GoogleScholarGoogle Scholar | 19799448PubMed |

[43]  P. B. Balakrishnan, N. Silvestri, T. Fernandez-Cabada, F. Marinaro, S. Fernandes, S. Fiorito, M. Miscuglio, D. Serantes, S. Ruta, K. Livesey, O. Hovorka, R. Chantrell, T. Pellegrino, Adv. Mater. 2020, 32, 2003712.
         | Crossref | GoogleScholarGoogle Scholar | 33002227PubMed |

[44]  M. Estrader, A. López-Ortega, I. V. Golosovsky, S. Estradé, A. G. Roca, G. Salazar-Alvarez, L. López-Conesa, D. Tobia, E. Winkler, J. D. Ardisson, W. A. A. Macedo, A. Morphis, M. Vasilakaki, K. N. Trohidou, A. Gukasov, I. Mirebeau, O. L. Makarova, R. D. Zysler, F. Peiró, M. D. Baró, L. Bergström, J. Nogués, Nanoscale 2015, 7, 3002.
         | Crossref | GoogleScholarGoogle Scholar | 25600147PubMed |

[45]  I. Castellanos-Rubio, I. Rodrigo, R. Munshi, O. Arriortua, J. S. Garitaonandia, A. Martinez-Amesti, F. Plazaola, I. Orue, A. Pralle, M. Insausti, Nanoscale 2019, 11, 16635.
         | Crossref | GoogleScholarGoogle Scholar | 31460555PubMed |

[46]  Z. Wu, S. Yang, W. Wu, Nanoscale 2016, 8, 1237.
         | Crossref | GoogleScholarGoogle Scholar | 26696235PubMed |

[47]  Y. Wang, J. He, C. Liu, W. H. Chong, H. Chen, Angew. Chem. Int. Ed. 2015, 54, 2022.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  S. S. Zalesskiy, V. P. Ananikov, Organometallics 2012, 31, 2302.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  J. S. Suk, Q. Xu, N. Kim, J. Hanes, L. M. Ensign, Adv. Drug Deliv. Rev. 2016, 99, 28.
         | Crossref | GoogleScholarGoogle Scholar | 26456916PubMed |

[50]  S. L. Saville, B. Qi, J. Baker, R. Stone, R. E. Camley, K. L. Livesey, L. Ye, T. M. Crawford, O. Thompson Mefford, J. Colloid Interface Sci. 2014, 424, 141.
         | Crossref | GoogleScholarGoogle Scholar | 24767510PubMed |

[51]  Z. Grabarek, J. Gergely, Anal. Biochem. 1990, 185, 131.
         | Crossref | GoogleScholarGoogle Scholar | 2344038PubMed |

[52]  K. Nishio, M. Ikeda, N. Gokon, S. Tsubouchi, H. Narimatsu, Y. Mochizuki, S. Sakamoto, A. Sandhu, M. Abe, H. Handa, J. Magn. Magn. Mater. 2007, 310, 2408.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  J. S. Andreu, J. Camacho, J. Faraudo, Soft Matter 2011, 7, 2336.
         | Crossref | GoogleScholarGoogle Scholar |